Diversity of bacterial communities in Adirondack lakes: do species assemblages reflect lake water chemistry?

Hydrobiologia - Tập 401 - Trang 77-96 - 1999
B. A. Methé1, J. P. Zehr1
1Department of Biology, MRC 303, Rensselaer Polytechnic Institute, Troy, U.S.A

Tóm tắt

Bacterial diversity was examined in six lakes located in the Adirondack Mountains of upstate New York. This region receives significant anthropogenic atmospheric inputs of strong mineral acids resulting in decreases in pH and acid neutralizing capacity (ANC) in many of the lakes. Statistical methods including correlation and cluster analysis were used to determine if there were significant associations between phylotypes and water chemistry variables. Direct effects of acidification, pH and ANC, were not significantly correlated with any of the broadest level taxonomic classifications (equivalent to class or order), but may be correlated with subgroups within these classifications. Indirect influences of acidification were suggested by significant correlations of phylotypes with aluminum chemistry. There were positive correlations between the relative abundance of the γ subdivision of the Proteobacteria and total aluminum (r 2= 0.70,p= 0.04), monomeric aluminum (r 2= 0.78, p= 0.02) and non-labile aluminum (r 2= 0.92, p= 0.002). The ACK1 clade of the β-Proteobacteria (Adirondack clade 1) was correlated with monomeric aluminum (r 2= 0.71, p=0.03) and non-labile aluminum (r 2= 0.73, p= 0.03). Significant negative correlations were found between the relative abundance of the Cytophaga-Flexibacter-Bacteroides phylum and total aluminum (r 2= 0.74, p= 0.03), and the High G+C subdivision of the Gram Positive phylum with total aluminum (r 2 0.70, p= 0.04). Dissolved organic carbon (DOC) concentrations may also influence bacteria through amelioration of aluminum toxicity and as a carbon source. There were significant positive correlations between DOC and the relative abundance of the γ (r 2= 0.66, p= 0.05) and β (r 2= 0.78, p= 0.02) subdivisions and the ACK1 clade (r 2= 0.84, p= 0.01). Additional significant correlations were also noted between specific phylotypes and certain macro- and micro-nutrients. The results of this study indicate that water chemistry can have a direct influence on bacterial lake assemblages and that in acid stressed lakes aluminum chemistry and DOC concentrations may play a particularly important role.

Tài liệu tham khảo

Bahr, M., J. E. Hobbie & M. L. Sogin, 1996. Bacterial diversity in an arctic lake: a freshwater SAR 11 cluster. Aquat. microb. Ecol. 11: 271–277. Baker, J. P. & C. L. Schofield, 1982. Aluminum toxicity to fish in acidic waters. Wat. Air Soil Pollut. 18: 289–309. Baker, J. P., S. A. Gherini, S. W. Christensen, J. Gallagher, R. K. Munson, R. M. Newton, K. H. Reckhow & C. L. Schofield, 1990a. Adirondack Lakes Survey: an interpretive analysis of fish communities and water chemistry, 1984–87. Adirondack Lakes Survey Corporation, Ray Brook, NY, U.S.A. Baker, J. P., D. P. Bernard, S. W. Christensen, M. J. Sale, J. Freda, K. Heltcher, D. Marmorek, L. Rowe, P. Scanlon, G. Suter, W. Warren-Hicks & P. Welbourn, 1990b. Biological Effects of Changes in Surface Water Acid-Base Chemistry. NAPAP Report 13. In National Acid Precipitation Assessment Program, Acidic Deposition: State of Science and Technology. Volume II. Borneman, J., P. W. Skroch, K. M. O'ullivan, J. A. Palus, N. G. Rumjanek, J. L. Jansen, J. Nienhuis & E. W. Triplett, 1996. Molecular microbial diversity of an agricultural soil in Wisconsin. Appl. envir. Microbiol. 62: 1935–1943. Chen, W. H. & P. J. Wangersky, 1996. Rates of microbial degradation of dissolved organic carbon from phytoplankton cultures. J. Plankton Res. 18: 1521–1533. Corstjens, P. L. A. M., J. P. M. De Vrind, P. Westbroek & E. W. De Vrind-De Jong, 1992. Enzymatic Iron Oxidation by Leptothrix discophora: identification of an iron-oxidizing bacteria. Appl. envir. Microbiol. 58: 450–454. Cronan, S. S. & C. L. Schofield, 1979. Aluminum leaching response to acid precipitation: effects on high-elevation watersheds in the northeast. Science 204: 304–306. Davis, W. B., M. J. McCauley & B. R. Byers, 1971. Iron requirements and aluminum sensitivity of hydroxamic requiring strain of Bacillus megaterium. J. Bact. 105: 589–594. DeLong, E. F., 1992. Archaea in Coastal Marine Environments. Proc. natn. Acad. Sci. U.S.A. 89: 5685–5689. Diels, L., Q. Dong, D. van der Lelie, W. Baeyens & M. Mergeay, 1995. J. Ind. Microbiol. 14: 142–153. Ehrlich, H. L., 1990. Geomicrobiology. 2nd edn. New York City: Marcel Dekker, Inc. 646 pp. Ekendahl, S., J. Arlinger, F. Stahl & K. Pedersen, 1994. Characterization of attached bacterial populations in deep granitic groundwater from the Stripa research mine by 16S rRNA gene sequencing and scanning electron microscopy. Microbiology 140: 1575–1583. Felsenstein, J., 1993. PHYLIP-phylogeny inference package (version 3.5c). Department of Genetics, University of Washington, Seattle. Distributed by the author. Freirenordi, C. S. & A. A. H. Vieira, 1996. Utilization of extracellular polysaccharides from Ankistrodesmus Densus (Chlorophyceae) by heterotrophic bacteria. Revista De Microbiologia 27: 27–32. Fuhrman, J. A., K. McCallum & A. A. Davis, 1993 Phylogenetic diversity of subsurface marine microbial communities from the Atlantic and Pacific oceans. Appl. envir. Microbiol. 59: 1294–1302. Giovannoni, S. J., E. J. DeLong, T. M. Schmidt & N. R. Pace, 1990. Tangential flow filtration and preliminary phylogenetic analysis of marine picoplankton. Appl. envir. Microbiol. 56: 2572–2575. Giovannoni, S. J., M. S. Rappe, K. L. Vergin & N. L. Adair, 1996. 16S rRNA genes reveal stratified open-ocean bacterioplankton populations related to the green non-sulfur bacteria. Proc. natn. Acad. Sci. U.S.A. 93: 7979–7984. Gray, J. P. & R. P. Herwig, 1996. Phylogenetic analysis of the bacterial communities in marine sediments. Appl. envir. Microbiol. 62: 4049–4059. Guida, L., Z. Saidi, M. N. Hughes & R. K. Poole, 1991. Aluminum toxicity and binding to Escherichia coli. Arch. Mikrobiol. 156: 507–512. Havens, K. E. & J. Decosta, 1987a. The role of aluminum contamination in determining phytoplankton and zooplankton responses to acidification. Wat. Air Soil Pollut. 33: 277–293. Havens, K. E. & J. DeCosta, 1987b. Freshwater plankton community succession during experimental acidification. Arch. Hydrobiol. 111: 37–65. Hiorns, W. D., B. A. Methé, S. A. Nierzwicki-Bauer & J. P. Zehr, 1997 Bacterial diversity in Adirondack mountain lakes as revealed by 16S rRNA gene sequences. Appl. envir. Microbiol. 63: 2957–2960. Knowles, R., 1982. Denitrification. Microbiol. Rev. 46: 43–70. Lee, Y. A., M. Hendson, N. J. Panopoulos & M. N. Schroth, 1994. Molecular cloning, chromosomal mapping and sequence analysis of copper resistance genes from Xanthamonas campestris pv. juglandis: homology with small blue copper proteins and multicopper oxidase. J. Bact. 176: 173–188. Lunsdorf, H., K. Brummer, K. N. Timmis & I. Wagner-Dobler, 1997. Metal selectivity of in situ microcolonies in biofilms of the Elbe River. J. Bact. 179: 31–40. Maidak, B. L., G. J. Olsen, N. Larsen, R. Overbeek, M. J. Mc-Caughey & C. R. Woese, 1996. The Ribosomal Database Project (RDP). Nucleic Acids Res. 24: 82–85. Methé B. A., W. D. Hiorns & J. P. Zehr, 1998. Contrasts between marine and freshwater bacterial community composition: analyses of communities in Lake George, NY and six other Adirondack lakes. Limnol. Oceanogr. 43: 368–374. Mills, S. D., C. A. Jasalavich & D. A. Cooksey, 1993. A twocomponent regulatory system required for copper-inducible expression of the copper resistance operon of Pseudomonas syringae. J. Bact. 175: 1656–1664. Momen, B. & J. P. Zehr, 1998. Watershed classification by discriminant analyses of lakewater-chemistry and terrestrial characteristics. Ecol. Appl. 8: 497–507. Moyer, C. L., F. C. Dobbs & D. M. Karl, 1995. Phylogenetic diversity of the bacterial community from a microbial mat at an active, hydrothermal vent system, Loihi Seamount, Hawaii. Appl. envir. Microbiol. 1995. 61: 1555–1562. Mullins, T. D., T. B. Britschgi, R. L. Krest & S. J. Giovannoni, 1995 Genetic comparisons reveal the same unknown bacterial lineages in Atlantic and Pacific bacterioplankton communities. Limnol. Oceanogr. 40: 148–158. Pace, N. R., 1997. A molecular view of microbial diversity and the biosphere. Science 276: 734–740. Peterson, R. H., R. A. Bourbonniere, G. L. Lacroix, D. J. Martin-Robichaud, P. Takats & G. Brun, 1989. Responses of Atlantic salmon (Salmo salar) alevins to dissolved organic carbon and dissolved aluminum at low pH. Wat. Air Soil Pollut. 46: 399–413. Pina, R. G. & C. Cervantes, 1996. Microbial interactions with aluminum. BioMetals 9: 311–316. Ramsing, N. B., H. Fossing, T. G. Ferdelman, F. Andersen & B. Thamdrup, 1996. Distribution of bacterial populations in a stratified fjord (Mariager Fjord, Denmark) quantified by in situ hybridization and related to chemical gradients in the water column. Appl. envir. Microbiol. 62: 1391–1404. Raskin, L., B. E. Rittmann & D. A. Stahl, 1996. Competition and coexistence of sulfate-reducing and methanogenic populations in anaerobic biofilms. Appl. envir. Microbiol. 62:3847–3857. Sadler, K. & S. Lynam, 1987. Some effects on the growth of brown trout from exposure to aluminum at different pH levels. J. Fish. Biol. 31: 209–219. Sanger, F., S. Nicklen & A. R. Coulsen, 1977. DNA sequencing with chain termination inhibitors. Proc. natn. Acad. Sci. U. S. A. 74: 5463–5467. Scharf, R., R. Mamet, Y. Zimmels, S. Kimchie & N. Schoenfeld, 1994. Evidence for the interference of aluminum with bacterial porphyrin biosynthesis. BioMetals 7: 135–141. Smith, S. W., R. Overbeek, C. R. Woese, W. Gilbert & P. M. Gillevet, 1994. The genetic data environment an expandable GUI for multiple sequence analysis. CABIOS 10: 671–675. Stackebrandt, E., W. Liesack & B. M. Goebel, 1993. Bacterial diversity in a soil sample from a subtropical Australian environment as determined by 16S rDNA analysis. FASEB Journal 7: 232–236. Van de Peer, Y. & R. De Wachter, 1994. TREECON for Windows: a software package for the construction and drawing of evolutionary trees for the Microsoft Windows environment. Comput. Applic. Biosci. 10: 569–570. Van der Lelie, D., T. Schwuchow, U. Schwidetzky & S. Wuertz, 1997. Two-component regulatory system involved in transcriptional control of heavy-metal homeostasis in Alcaligenes eutrophus. Molecular Microbiol. 23: 493–503. Wagner, M., R. Erhart, W. Manz, R. Amann, H. Lemmer, D. Wedi & K.-H. Schleifer, 1994. Development of an rRNA-targeted oligonucleotide probe specific for the genus Acinetobacter and its application for in situ monitoring in activated sludge. Appl. envir. Microbiol. 60: 792–800. Weisburg, W. G., S. M. Barns, D. A. Pelletier & D. J. Lane, 1991. 16S ribosomal DNA amplification for phylogenetic study. J. Bact. 173: 697–703. Weiss, P., B. Schweitzer, R. Amann & M. Simon, 1996. Identification in situ and dynamics of bacteia on limnetic organic aggregates (lake snow). Appl. envir. Microbiol. 62: 1998–2005. Zwart, G., W. D. Hiorns, B. A. Methé, M. P. Agterveld, R. Huismans, S. L. Nold, J. P. Zehr & H. J. Laanbroek, 1998. Nearidentical 165 rRNA sequences recovered from lakes in North America and Europe indicate the existence of clades of freshwater bacteria with global distribution. Syst. appl. Microbiol. 21: 546–556.