Diversity in the breadfruit complex (Artocarpus, Moraceae): genetic characterization of critical germplasm

Springer Science and Business Media LLC - Tập 11 - Trang 1-26 - 2015
Nyree Zerega1,2, Tyr Wiesner-Hanks1, Diane Ragone3, Brian Irish4, Brian Scheffler5, Sheron Simpson5, Francis Zee6
1Plant Biology and Conservation, Northwestern University, Evanston, USA
2Department of Plant Science, Chicago Botanic Garden, Glencoe, USA
3Breadfruit Institute, National Tropical Botanical Garden, Kalaheo, USA
4Tropical Agriculture Research Station, USDA-ARS, Mayagüez, Puerto Rico
5Genomics and Bioinformatics Research Unit, USDA-ARS, Stoneville, USA
6Pacific Basin Agricultural Research Center (PBARC), USDA-ARS, Hilo, USA

Tóm tắt

Breadfruit (Artocarpus altilis, Moraceae) is a traditional staple crop in Oceania and has been introduced throughout the tropics. This study examines important germplasm collections of breadfruit and its closest wild relatives and aims to (1) characterize genetic diversity, including identification of unknown and duplicate accessions, (2) evaluate genetic structure and hybridization within the breadfruit complex, and (3) compare utility of microsatellite markers to previously reported amplified fragment length polymorphism (AFLP) and isozyme markers in differentiating among cultivars. Data for 19 microsatellite loci were collected for 349 individuals (representing 255 accessions) including breadfruit (A. altilis), two wild relatives (Artocarpus camansi and Artocarpus mariannensis), and putative hybrids (A. altilis × A. mariannensis). Accessions were of mixed ploidy and regional origin, but predominantly from Oceania. Microsatellite loci collectively had a polymorphic information content (PIC) of 0.627 and distinguished 197 unique genotypes sorted into 129 different lineages, but a single genotype accounts for 49 % of all triploid breadfruit examined. Triploid hybrids and diploid A. altilis exhibited the highest levels of diversity as measured by allele number and gene diversity. Most accessions (75 %) of unknown origin matched either a known genotype or lineage group in the collection. Putative hybrids all had genetic contributions from A. mariannensis but ranged in the level of genetic contribution from A. altilis. Microsatellite markers were found to be more informative than isozyme markers and slightly less informative, with regard to accession discrimination, than AFLP markers. This set of microsatellite markers and the dataset presented here will be valuable for breadfruit germplasm management and conservation.

Tài liệu tham khảo

Adebowale KO, Olu-Oqolabi BI, Olawumi EK, Lawal OS (2005) Functional properties of native, physically and chemically modified breadfruit (Artocarpus altilis) starch. Ind Crops Prod 21:343–351 Baric S, Wagner J, Storti A, Dalla Via J (2010) Application of an extended set of microsatellite DNA markers for the analysis of presumed synonym cultivars of apple. Acta Hortic 918:303–308 Botstein D, White RL, Skolnick M, Davis RW (1980) Construction of a genetic linkage map in man using restriction fragment length polymorphisms. Am J Hum Genet 32:314–331 Bruvo R, Michiels NK, D’Souza TG, Schulenburg H (2004) A simple method for the calculation of microsatellite genotype distances irrespective of ploidy level. Mol Ecol 13:2101–2106. doi:10.1111/j.1365-294X.2004.02209.x Buerkle CA (2005) Maximum-likelihood estimation of a hybrid index based on molecular markers. Mol Ecol Notes 5:684–687 Clark LV, Jasieniuk M (2011) POLYSAT: an R package for polyploid microsatellite analysis. Mol Ecol Resour 11:562–566. doi:10.1111/j.1755-0998.2011.02985.x Creste S, Neto AT, Vencovsky R, De OSilva S, Figueira A (2004) Genetic diversity of Musa diploid and triploid accessions from the Brazilian banana breeding program estimated by microsatellite markers. Genet Resour Crop Evol 51:723–733 de Jesus ON, de Oliveira S, Amorim EP, Ferreira CF, Salabert JM, de Campos, de Gaspari-Silva G, Figueira A (2013) Genetic diversity and population structure of Musa accessions in ex situ conservation. BMC Plant Biol. 13:41. doi:10.1186/1471-2229-13-41 De Silva HN, Hall AJ, Rikkerink E, McNeilage MA, Fraser LG (2005) Estimation of allele frequencies in polyploids under certain patterns of inheritance. Heredity 95:327–334. doi:10.1038/sj.hdy.6800728 Esselink GD, Nybom H, Vosman B (2004) Assignment of allelic configuration in polyploids using the MAC-PR (microsatellite DNA allele counting-peak ratios) method. Theor Appl Genet 109:402–408. doi:10.1007/s00122-004-1645-5 Evanno G, Regnaut S, Goudet J (2005) Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Mol Ecol 14(8):2611–20 Falush D, Stephens M, Pritchard JK (2007) Inference of population structure using multilocus genotype data: dominant markers and null alleles. Mol Ecol Notes 7:574–578 Felsenstein J (2005) PHYLIP (Phylogeny Inference Package) version 3.6. Distributed by the author. Department of Genome Sciences, University of Washington, Seattle. Fosberg FR (1960) Introgression in Artocarpus in Micronesia. Brittonia 12:101–113 Fownes JH, Raynor WC (1991) Seasonality and yield of breadfruit cultivars in the indigenous agroforestry system of Pohnpei, Federated States of Micronesia. Trop Ag (Trinidad) 70(2):103–9 Ghislain M, Spooner DM, Rodriguez F, Villamon F, Nuñez J, Vásquez C, Waugh R, Bonierbale M (2004) Selection of highly informative and user-friendly microsatellites (SSRs) for genotyping of cultivated potato. Theor Appl Genet 108:881–890. doi:10.1007/s00122-003-1494-1497 Giraldo E, Lopez-Corrales M, Hormaza JI (2008) Optimization of the management of an ex-situ germplasm bank in common fig with SSRs. J Am Soc Hort Sci 133(1):69–77 Gunn BF, Aradhya M, Salick JM, Miller AJ, Yang YP, Liu L, Hai X (2010) Genetic variation in walnuts (Juglans regia L. and J. sigillata Dode, Juglandaceae): species distinctions, human impacts, and the conservation of agrobiodiversity in Yunnan, China. Am J Bot 97:60–671 Hardy OJ, Vekemans X (2002) SPAGeDi: a versatile computer program to analyse spatial genetic structure at the individual or population levels. Mol Ecol Notes 2:618–620. doi:10.1046/j.1471-8278.2002.00305.x Hirano R, Oo TH, Watanabe KN (2010) Myanmar mango landraces reveal genetic uniqueness over common cultivars from Florida, India, and Southeast Asia. Genome 53:321–330 Hoshino AA, Bravo JP, Nobile PM, Morelli KA (2012) Microsatellites as tools for genetic diversity analysis. In: Caliskan M (ed) Genetic diversity in microorganisms. In Tech, Croatia, pp 149–170 Irish BM, Cuevas HE, Simpson SA, Scheffler BE, Sardos J, Ploetz R, Goenaga R (2014) Musa spp. germplasm management: microsatellite fingerprinting of USDA–ARS national plant germplasm system collection. Crop Sci 54:2140–2151 Jones AMP, Murch SJ, Ragone D (2010) Diversity of breadfruit (Artocarpus altilis, Moraceae) seasonality: a resource for year-round nutrition. Econ Bot 64(4):340–351 Jones AMP, Ragone D, Aiona K, Lane WA, Murch SJ (2011) Nutritional and morphological diversity of breadfruit (Artocarpus, Moraceae): identification of elite cultivars for food security. J Food Compos Anal 24:1091–1102. doi:10.1016/j.jfca.2011.04.002 Jones AMP, Baker R, Ragone D, Murch SJ (2013) Identification of pro-vitamin A carotenoid-rich cultivars of breadfruit (Artocarpus, Moraceae). J Food Compos Anal 31(1):51–61. doi:10.1016/j.jfca.2013.03.003 Korir NK, Li Y, Leng XP, Wu Z, Wang C, Fan JG (2013) A novel and efficient strategy for practical identification of tomato (Solanum lycopersicon) varieties using modified RAPD fingerprints. Genet Mol Res 12(2):1816–1828 Lai Y, Sun F (2003) The relationship between microsatellite slippage mutation rate and the number of repeat units. Mol Biol Evol 20(12):2123–2131 Leakey CLA, (1977) Breadfruit reconnaissance study in the Caribbean region. CIAT/InterAmerican Development Bank Mariette S, Tavaud M, Arunyawat U, Capdeville G, Millan M, Salin F (2010) Population structure and genetic bottleneck in sweet cherry estimated with SSRs and the gametophytic self-incompatibility locus. BMC Genet 11:77. doi:10.1186/1471-2156-11-77 Markham C (1904) The voyages of Pedro Fernandez de Quiros. Hakluyt Society, London, pp 1595–1606, Vol. I McGregor CE, Lambert CA, Greyling MM, Louw JH, Warnich L (2000) A comparative assessment of DNA fingerprinting techniques (RAPD, ISSR, AFLP and SSR) in tetraploid potato (Solanum tuberosum L.) germplasm. Euphytica 113:135–144 Meirmans PG, Van Tienderen PH (2004) Genotype and genodive: two programs for the analysis of genetic diversity of asexual organisms. Mol Ecol Notes 4:792–794. doi:10.1111/j.1471-8286.2004.00770.x Mengoni A, Gori A, Bazzicalupo M (2000) Use of RAPD and microsatellite (SSR) variation to assess genetic relationships among populations of tetraploid alfalfa, Medicago sativa. Plant Breed 119:311–317 Miller A, Gross BL (2011) From forest to field: perennial fruit crop domestication. Am J Bot 98(9):1389–414 Moe KT, Kwon SW, Park YJ (2012) Trends in genomic and molecular marker systems for the development of some underutilized crops. Genes Genom 34:451–466 Morton JF (1990) Under-exploited fruit-vegetables can enhance the world food supply. Acta Hortic 275:401–408 Motilal LA, Zhang D, Mischke S, Meinhardt LW, Umaharan P (2013) Microsatellite-aided detection of genetic redundancy improves management of the international Cocoa Genebank, Trinidad. Tree Genet Genomes 9:1395–1411 Omubuwajo TO (2007) Breadfruit as a key component of sustainable livelihoods in Nigeria: prospects, opportunities and challenges. Acta Hortic 757:121–124 Powell D (1977) Voyage of the plant nursery, HMS providence. Econ Bot 31:387–431, 1791–1793 Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155(2):945–59 Ragone D (1991) Collection, establishment and evaluation of a germplasm collection of Pacific Island breadfruit. Dissertation, University of Hawaii Ragone D (1995) Description of Pacific Island breadfruit cultivars. Acta Hortic 413:93–98 Ragone D (1997) Breadfruit: Artocarpus altilis (Parkinson) Fosberg. Promoting the conservation and use of underutilized and neglected crops 10. IPGRI, Inter Plant Genetic Resources Inst, Rome Ragone D (2001) Chromosome numbers and pollen stainability of three species of Pacific Island breadfruit (Artocarpus, Moraceae). Am J Bot 88(4):693–696 Ragone D (2007) Breadfruit: diversity, conservation, and potential. Acta Hortic 757:19–30 Ragone D, Cavaletto CG (2006) Sensory evaluation of fruit quality and nutritional composition of 20 breadfruit (Artocarpus, Moraceae) cultivars. Econ Bot 60(5):335–346 Ragone D, Wiseman J (2007) Developing and applying descriptors for breadfruit germplasm. Acta Hortic 757:71–80 Ragone D, Tavana G, Stevens JM, Stewart PA, Stone R, Cox PM, Cox PA (2004) Nomenclature of breadfruit cultivars in Samoa: saliency, ambiguity, and mononomiality. J Ethnobiol 24(1):33–49 Rajora OP, Rahman MH (2003) Microsatellite DNA and RAPD fingerprinting, identification and genetic relationships of hybrid poplar (Populus × canadensis) cultivars. Theor Appl Genet 106:470–477 Roberts-Nkrumah LB (2007) An overview of breadfruit (Artocarpus altilis) in the Caribbean. Acta Hortic 757:51–60 Schnell RJ, Brown JS, Olano CT, Meerow AW, Campbell RJ, Khun DN (2006) Mango genetic diversity analysis and pedigree inferences for Florida cultivars using microsatellite markers. J Am Soc Hort Sci 131(2):214–224 Szikriszt B, Hegedüs A, Halász J (2011) Review of genetic diversity studies in almond (Prunus dulcis). Acta Agronom 59(4):379–395 Taylor M, Kete T, Tuia V (2009) Underutilized species in the Pacific: an untapped source of nutritional and economic wealth. Acta Hortic 806:235–240 Tomiuk J, Guldbrandtsen B, Loeschcke V (2009) Genetic similarity of polyploids: a new version of the computer program POPDIST (version 1.2.0) considers intraspecific genetic differentiation. Mol Ecol Resour 9:1364–1368. doi:10.1111/j.1755-0998.2009.02623.x Trujillo I, Ojeda MA, Urdiroz NM, Potter D, Barranco D, Rallo L, Diez CM (2013) Identification of the Worldwide Olive Germplasm Bank of Córdoba (Spain) using SSR and morphological markers. Tree Genet Genomes. doi:10.1007/s11295-013-0671-3 Wickham H (2009) ggplot2: elegant graphics for data analysis. Springer, New York Wilder GP (1928) Breadfruit of Tahiti. B.P. Bishop museum. Bulletin 50, Honolulu Witherup C, Ragone D, Wiesner-Hanks T, Irish B, Scheffler B, Simpson, Zee F, Zuberi MI, Zerega NJC (2013) Development of microsatellite loci in Artocarpus altilis (Moraceae) and cross-amplification in congeneric species. Appl Plant Sci 1(7):1200423. doi:10.3732/apps.1200423 Wootton M, Tumaalii F (1984) Breadfruit production, utilisation and composition—a review. Food Tech 37(10):464–465 Wünsch A, Hormaza JI (2007) Characterization of variability and genetic similarity of European pear using microsatellite loci developed in apple. Scientia Hortic 113(1):37–43 Wünsch A, Carrera M, Hormaza JI (2006) Molecular characterization of local Spanish peach [Prunus persica (L.) Batsch] germplasm. Genet Resour Crop Ev 53:925–932 Xuan H, Ding Y, Spann D, Möller O, Büchele M, Neumüller M (2011) Microsatellite markers (SSR) as a tool to assist in identification of European plum (Prunus domestica). Acta Hortic 918:689–692 Zerega NJC, Ragone D, Motley TJ (2004) Complex origins of breadfruit (Artocarpus altilis, Moraceae): implications for human migrations in Oceania. Am J Bot 91(5):760–6 Zerega NJC, Ragone D, Motley TJ (2005) Systematics and species limits of breadfruit (Artocarpus, Moraceae). Sys Bot 30:603–15 Zerega NJC, Ragone D, Motley TJ (2006) Breadfruit origins, diversity, and human-facilitated distribution. In: Motley TJ, Zerega NJC, Cross H (eds) Darwin’s harvest: new approaches to the origins, evolution, and conservation of crops. Columbia University Press, New York, pp 213–238