Diversity, classification and evolution of CRISPR-Cas systems

Current Opinion in Microbiology - Tập 37 - Trang 67-78 - 2017
Eugene V. Koonin1, Kira S. Makarova1, Feng Zhang2,3,4
1National Center for Biotechnology Information, National Library of Medicine, Bethesda, MD 20894, USA
2Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
3Departments of Brain and Cognitive Science and Biological Engineering, Cambridge, MA 02139, USA
4McGovern Institute for Brain Research at MIT, Cambridge, MA 02139, USA

Tóm tắt

Từ khóa


Tài liệu tham khảo

Sorek, 2013, CRISPR-mediated adaptive immune systems in bacteria and archaea, Annu. Rev. Biochem., 82, 237, 10.1146/annurev-biochem-072911-172315

Wright, 2016, Biology and applications of CRISPR systems: harnessing nature’s toolbox for genome engineering, Cell, 164, 29, 10.1016/j.cell.2015.12.035

Komor, 2017, CRISPR-based technologies for the manipulation of eukaryotic genomes, Cell, 168, 20, 10.1016/j.cell.2016.10.044

Mohanraju, 2016, Diverse evolutionary roots and mechanistic variations of the CRISPR-Cas systems, Science, 353, 10.1126/science.aad5147

Pingoud, 2014, Type II restriction endonucleases—a historical perspective and more, Nucleic Acids Res., 42, 7489, 10.1093/nar/gku447

Takeuchi, 2012, Nature and intensity of selection pressure on CRISPR-associated genes, J. Bacteriol., 194, 216, 10.1128/JB.06521-11

Makarova, 2011, Evolution and classification of the CRISPR-Cas systems, Nat. Rev. Microbiol., 9, 467, 10.1038/nrmicro2577

Makarova, 2015, An updated evolutionary classification of CRISPR-Cas systems, Nat. Rev. Microbiol., 13, 722, 10.1038/nrmicro3569

Bondy-Denomy, 2013, Bacteriophage genes that inactivate the CRISPR/Cas bacterial immune system, Nature, 493, 429, 10.1038/nature11723

Bondy-Denomy, 2015, Multiple mechanisms for CRISPR-Cas inhibition by anti-CRISPR proteins, Nature, 526, 136, 10.1038/nature15254

Pawluk, 2016, Naturally occurring off-switches for CRISPR-Cas9, Cell, 167, 1829, 10.1016/j.cell.2016.11.017

Pawluk, 2016, Inactivation of CRISPR-Cas systems by anti-CRISPR proteins in diverse bacterial species, Nat. Microbiol., 1, 16085, 10.1038/nmicrobiol.2016.85

Makarova, 2013, The basic building blocks and evolution of CRISPR-cas systems, Biochem. Soc. Trans., 41, 1392, 10.1042/BST20130038

Amitai, 2016, CRISPR-Cas adaptation: insights into the mechanism of action, Nat. Rev. Microbiol., 14, 67, 10.1038/nrmicro.2015.14

Makarova, 2011, Unification of Cas protein families and a simple scenario for the origin and evolution of CRISPR-Cas systems, Biol. Direct., 6, 10.1186/1745-6150-6-38

Zhao, 2014, Crystal structure of the RNA-guided immune surveillance Cascade complex in Escherichia coli, Nature, 515, 147, 10.1038/nature13733

van der Oost, 2014, Unravelling the structural and mechanistic basis of CRISPR-Cas systems, Nat. Rev. Microbiol., 12, 479, 10.1038/nrmicro3279

Jackson, 2014, Structural biology. Crystal structure of the CRISPR RNA-guided surveillance complex from Escherichia coli, Science, 345, 1473, 10.1126/science.1256328

Jackson, 2015, A conserved structural chassis for mounting versatile CRISPR RNA-guided immune responses, Mol. Cell., 58, 722, 10.1016/j.molcel.2015.05.023

Hochstrasser, 2014, CasA mediates Cas3-catalyzed target degradation during CRISPR RNA-guided interference, Proc. Natl. Acad. Sci. U. S. A., 111, 6618, 10.1073/pnas.1405079111

Hochstrasser, 2016, DNA Targeting by a minimal CRISPR RNA-guided cascade, Mol. Cell., 63, 840, 10.1016/j.molcel.2016.07.027

Staals, 2013, Structure and activity of the RNA-targeting Type III-B CRISPR-Cas complex of Thermus thermophilus, Mol. Cell., 52, 135, 10.1016/j.molcel.2013.09.013

Staals, 2014, RNA targeting by the type III-A CRISPR-Cas Csm complex of Thermus thermophilus, Mol. Cell., 56, 518, 10.1016/j.molcel.2014.10.005

Hatoum-Aslan, 2013, A ruler protein in a complex for antiviral defense determines the length of small interfering CRISPR RNAs, J. Biol. Chem., 288, 27888, 10.1074/jbc.M113.499244

Kuznedelov, 2016, Altered stoichiometry Escherichia coli Cascade complexes with shortened CRISPR RNA spacers are capable of interference and primed adaptation, Nucleic Acids Res., 44, 10849, 10.1093/nar/gkw914

Luo, 2016, The CRISPR RNA-guided surveillance complex in Escherichia coli accommodates extended RNA spacers, Nucleic Acids Res., 44, 7385

Charpentier, 2015, Biogenesis pathways of RNA guides in archaeal and bacterial CRISPR-Cas adaptive immunity, FEMS Microbiol. Rev., 39, 428, 10.1093/femsre/fuv023

Niewoehner, 2016, Structural basis for the endoribonuclease activity of the type III-A CRISPR-associated protein Csm6, RNA, 22, 318, 10.1261/rna.054098.115

Zetsche, 2015, Cpf1 is a single RNA-guided endonuclease of a Class 2 CRISPR-Cas system, Cell, 163, 759, 10.1016/j.cell.2015.09.038

Shmakov, 2015, Discovery and functional characterization of diverse Class 2 CRISPR-Cas systems, Mol. Cell., 60, 385, 10.1016/j.molcel.2015.10.008

Shmakov, 2017, Diversity and evolution of class 2 CRISPR-Cas systems, Nat. Rev. Microbiol., 10.1038/nrmicro.2016.184

Abudayyeh, 2016, C2c2 is a single-component programmable RNA-guided RNA-targeting CRISPR effector, Science, 353, 10.1126/science.aaf5573

Smargon, 2017, Cab is a type VI-B CRISPR-associated RNA-guided RNase differentially regulated by accessory proteins Csx27 and Csx 28, Mol. Cell., 65, 618, 10.1016/j.molcel.2016.12.023

Burstein, 2017, New CRISPR-Cas systems from uncultivated microbes, Nature, 542, 237, 10.1038/nature21059

Jinek, 2014, Structures of Cas9 endonucleases reveal RNA-mediated conformational activation, Science, 343, 1247997, 10.1126/science.1247997

Nishimasu, 2015, Crystal Structure of Staphylococcus aureus Cas9, Cell, 162, 1113, 10.1016/j.cell.2015.08.007

Nishimasu, 2014, Crystal structure of Cas9 in complex with guide RNA and target DNA, Cell, 156, 935, 10.1016/j.cell.2014.02.001

Hirano, 2016, Structure and Engineering of Francisella novicida Cas9, Cell, 164, 950, 10.1016/j.cell.2016.01.039

Dong, 2016, The crystal structure of Cpf1 in complex with CRISPR RNA, Nature, 532, 522, 10.1038/nature17944

Yamano, 2016, Crystal structure of Cpf1 in complex with guide RNA and target DNA, Cell, 165, 949, 10.1016/j.cell.2016.04.003

Gao, 2016, Type V CRISPR-Cas Cpf1 endonuclease employs a unique mechanism for crRNA-mediated target DNA recognition, Cell Res., 26, 901, 10.1038/cr.2016.88

Swarts, 2017, Structural basis for guide RNA processing and seed-dependent DNA targeting by CRISPR-Cas12a, Mol. Cell., 66, 221, 10.1016/j.molcel.2017.03.016

Liu, 2017, C2c1-sgRNA complex structure reveals RNA-guided DNA cleavage mechanism, Mol. Cell., 65, 310, 10.1016/j.molcel.2016.11.040

Yang, 2016, PAM-dependent target DNA recognition and cleavage by C2c1 CRISPR-Cas endonuclease, Cell, 167, 1814, 10.1016/j.cell.2016.11.053

Lewis, 2017, Building the Class 2 CRISPR-Cas Arsenal, Mol. Cell., 65, 377, 10.1016/j.molcel.2017.01.024

Jinek, 2012, A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity, Science, 337, 816, 10.1126/science.1225829

Gasiunas, 2012, Cas9-crRNA ribonucleoprotein complex mediates specific DNA cleavage for adaptive immunity in bacteria, Proc. Natl. Acad. Sci. U. S. A., 109, E2579, 10.1073/pnas.1208507109

Jiang, 2016, Structures of a CRISPR-Cas9 R-loop complex primed for DNA cleavage, Science, 351, 867, 10.1126/science.aad8282

Anantharaman, 2013, Comprehensive analysis of the HEPN superfamily: identification of novel roles in intra-genomic conflicts, defense, pathogenesis and RNA processing, Biol. Direct., 8, 15, 10.1186/1745-6150-8-15

Hale, 2014, Target RNA capture and cleavage by the Cmr type III-B CRISPR-Cas effector complex, Genes. Dev., 28, 2432, 10.1101/gad.250712.114

Hale, 2012, Essential features and rational design of CRISPR RNAs that function with the Cas RAMP module complex to cleave RNAs, Mol. Cell., 45, 292, 10.1016/j.molcel.2011.10.023

Samai, 2015, Co-transcriptional DNA and RNA cleavage during Type III CRISPR-Cas immunity, Cell, 161, 1164, 10.1016/j.cell.2015.04.027

Liu, 2017, Two distant catalytic sites are responsible for C2c2 RNase activities, Cell, 168, 121, 10.1016/j.cell.2016.12.031

Koonin, 2017, Coupling immunity and programmed cell suicide in prokaryotes: life-or-death choices, Bioessays, 39, 1, 10.1002/bies.201600186

Makarova, 2012, Live virus-free or die: coupling of antivirus immunity and programmed suicide or dormancy in prokaryotes, Biol. Direct., 7, 40, 10.1186/1745-6150-7-40

Zhang, 2013, Processing-independent CRISPR RNAs limit natural transformation in Neisseria meningitidis, Mol. Cell., 50, 488, 10.1016/j.molcel.2013.05.001

Fonfara, 2016, The CRISPR-associated DNA-cleaving enzyme Cpf1 also processes precursor CRISPR RNA, Nature, 532, 517, 10.1038/nature17945

East-Seletsky, 2016, Two distinct RNase activities of CRISPR-C2c2 enable guide-RNA processing and RNA detection, Nature, 538, 270, 10.1038/nature19802

Zetsche, 2017, Multiplex gene editing by CRISPR-Cpf1 using a single crRNA array, Nat. Biotechnol., 35, 31, 10.1038/nbt.3737

Krupovic, 2016, Self-synthesizing transposons: unexpected key players in the evolution of viruses and defense systems, Curr. Opin. Microbiol., 31, 25, 10.1016/j.mib.2016.01.006

Krupovic, 2014, Casposons: a new superfamily of self-synthesizing DNA transposons at the origin of prokaryotic CRISPR-Cas immunity, BMC Biol., 12, 36, 10.1186/1741-7007-12-36

Hickman, 2015, The casposon-encoded Cas1 protein from Aciduliprofundum boonei is a DNA integrase that generates target site duplications, Nucleic Acids Res., 43, 10576, 10.1093/nar/gkv1180

Beguin, 2016, Casposon integration shows strong target site preference and recapitulates protospacer integration by CRISPR-Cas systems, Nucleic Acids Res., 44, 10367

Koonin, 2015, Evolution of adaptive immunity from transposable elements combined with innate immune systems, Nat. Rev. Genet., 16, 184, 10.1038/nrg3859

Krupovic, 2017, Casposons: the mobile elements that gave rise to the adaptation module of CRISPR-Cas systems, Curr. Opin. Microbiol., 38, 36, 10.1016/j.mib.2017.04.004

Swarts, 2014, The evolutionary journey of Argonaute proteins, Nat. Struct. Mol. Biol., 21, 743, 10.1038/nsmb.2879

Pasternak, 2013, ISDra2 transposition in Deinococcus radiodurans is downregulated by TnpB, Mol. Microbiol., 88, 443, 10.1111/mmi.12194

Chylinski, 2014, Classification and evolution of type II CRISPR-Cas systems, Nucleic Acids Res., 42, 6091, 10.1093/nar/gku241

Kapitonov, 2015, ISC, a novel group of bacterial and archaeal DNA transposons that encode Cas9 homologs, J. Bacteriol., 198, 797, 10.1128/JB.00783-15

Jiang, 2016, Degradation of phage transcripts by CRISPR-associated RNases enables type III CRISPR-Cas immunity, Cell, 164, 710, 10.1016/j.cell.2015.12.053

Silas, 2016, Direct CRISPR spacer acquisition from RNA by a natural reverse transcriptase-Ca fusion protein, Science, 351, 10.1126/science.aad4234