Diversity and function of bacterial microbiota in the mosquito holobiont

Parasites and Vectors - Tập 6 Số 1 - 2013
Guillaume Minard1, Patrick Mavingui1, Claire Valiente Moro1
1UMR CNRS 5557, USC INRA 1364, VetAgro Sup, Ecologie Microbienne, FR41 BioEnvironment and Health, Université de Lyon 1, Villeurbanne, F-69622, France

Tóm tắt

Abstract Mosquitoes (Diptera: Culicidae) have been shown to host diverse bacterial communities that vary depending on the sex of the mosquito, the developmental stage, and ecological factors. Some studies have suggested a potential role of microbiota in the nutritional, developmental and reproductive biology of mosquitoes. Here, we present a review of the diversity and functions of mosquito-associated bacteria across multiple variation factors, emphasizing recent findings. Mosquito microbiota is considered in the context of possible extended phenotypes conferred on the insect hosts that allow niche diversification and rapid adaptive evolution in other insects. These kinds of observations have prompted the recent development of new mosquito control methods based on the use of symbiotically-modified mosquitoes to interfere with pathogen transmission or reduce the host life span and reproduction. New opportunities for exploiting bacterial function for vector control are highlighted.

Từ khóa


Tài liệu tham khảo

Dale C, Moran NA: Molecular interactions between bacterial symbionts and their hosts. Cell. 2006, 126: 453-465. 10.1016/j.cell.2006.07.014.

Lane N: Energetics and genetics across the prokaryote-eukaryote divide. Biol Direct. 2011, 6: 35-10.1186/1745-6150-6-35.

Reshef L, Koren O, Loya Y, Zilber-Rosenberg I, Rosenberg E: The coral probiotic hypothesis. Environ Microbiol. 2006, 8: 2068-2073. 10.1111/j.1462-2920.2006.01148.x.

Guay J-F, Boudreault S, Michaud D, Cloutier C: Impact of environmental stress on aphid clonal resistance to parasitoids: Role of Hamiltonella defensa bacterial symbiosis in association with a new facultative symbiont of the pea aphid. J Insect Physiol. 2009, 55: 919-926. 10.1016/j.jinsphys.2009.06.006.

Rosenberg E, Koren O, Reshef L, Efrony R, Zilber-Rosenberg I: The role of microorganisms in coral health, disease and evolution. Nat Rev Microbiol. 2007, 5: 355-362. 10.1038/nrmicro1635.

Rosenberg E, Zilber-Rosenberg I: Symbiosis and development: the hologenome concept. Birth Defects Res C Embryo Today. 2011, 93: 56-66. 10.1002/bdrc.20196.

Toft C, Andersson SGE: Evolutionary microbial genomics: insights into bacterial host adaptation. Nat Rev Genet. 2010, 11: 465-475.

Douglas AE: Lessons from studying insect symbioses. Cell Host Microbe. 2011, 10: 359-367. 10.1016/j.chom.2011.09.001.

Oliver KM, Russell JA, Moran NA, Hunter MS: Facultative bacterial symbionts in aphids confer resistance to parasitic wasps. Proc Natl Acad Sci USA. 2003, 100: 1803-1807. 10.1073/pnas.0335320100.

Douglas AE: Nutritional interactions in insect-microbial symbioses: aphids and their symbiotic bacteria Buchnera. Annu Rev Entomol. 1998, 43: 17-37. 10.1146/annurev.ento.43.1.17.

Akman L, Yamashita A, Watanabe H, Oshima K, Shiba T, Hattori M, Aksoy S: Genome sequence of the endocellular obligate symbiont of tsetse flies, Wigglesworthia glossinidia. Nat Genet. 2002, 32: 402-407. 10.1038/ng986.

Pais R, Lohs C, Wu Y, Wang J, Aksoy S: The obligate mutualist Wigglesworthia glossinidia influences reproduction, digestion, and immunity processes of its host, the tsetse fly. Appl Environ Microbiol. 2008, 74: 5965-5974. 10.1128/AEM.00741-08.

Becker N: Mosquitoes and Their Control. 2003, New York: Springer

Cumberland S: Mosquito wars. Bull World Health Organ. 2009, 87: 167-168.

Ricci I, Damiani C, Capone A, Defreece C, Rossi P, Favia G: Mosquito/microbiota interactions: from complex relationships to biotechnological perspectives. Curr Opin Microbiol. 2012, 15: 278-284. 10.1016/j.mib.2012.03.004.

Iturbe-Ormaetxe I, Walker T, O’ Neill SL: Wolbachia and the biological control of mosquito-borne disease. EMBO Rep. 2011, 12: 508-518. 10.1038/embor.2011.84.

Calvitti M, Moretti R, Skidmore AR, Dobson SL: Wolbachia strain wPip yields a pattern of cytoplasmic incompatibility enhancing a Wolbachia-based suppression strategy against the disease vector Aedes albopictus. Parasites & Vectors. 2012, 5: 254-10.1186/1756-3305-5-254.

McMeniman CJ, Lane RV, Cass BN, Fong AWC, Sidhu M, Wang Y-F, O’Neill SL: Stable introduction of a life-shortening Wolbachia infection into the mosquito Aedes aegypti. Science. 2009, 323: 141-144. 10.1126/science.1165326.

Moreira LA, Iturbe-Ormaetxe I, Jeffery JA, Lu G, Pyke AT, Hedges LM, Rocha BC, Hall-Mendelin S, Day A, Riegler M, Hugo LE, Johnson KN, Kay BH, McGraw EA, van den Hurk AF, Ryan PA, O’Neill SL: A Wolbachia symbiont in Aedes aegypti limits infection with dengue, Chikungunya, and Plasmodium. Cell. 2009, 139: 1268-1278. 10.1016/j.cell.2009.11.042.

Demaio J, Pumpuni CB, Kent M, Beier JC: The midgut bacterial flora of wild Aedes triseriatus, Culex pipiens, and Psorophora columbiae mosquitoes. Am J Trop Med Hyg. 1996, 54: 219-223.

Gonzalez-Ceron L, Santillan F, Rodriguez MH, Mendez D, Hernandez-Avila JE: Bacteria in midguts of field-collected Anopheles albimanus block Plasmodium vivax sporogonic development. J Med Entomol. 2003, 40: 371-374. 10.1603/0022-2585-40.3.371.

Pidiyar VJ, Jangid K, Patole MS, Shouche YS: Studies on cultured and uncultured microbiota of wild Culex quinquefasciatus mosquito midgut based on 16s ribosomal RNA gene analysis. Am J Trop Med Hyg. 2004, 70: 597-603.

Lindh JM, Terenius O, Faye I: 16S rRNA gene-based identification of midgut bacteria from field-caught Anopheles gambiae sensu lato and A. funestus mosquitoes reveals new species related to known insect symbionts. Appl Environ Microbiol. 2005, 71: 7217-7223. 10.1128/AEM.71.11.7217-7223.2005.

Rani A, Sharma A, Rajagopal R, Adak T, Bhatnagar RK: Bacterial diversity analysis of larvae and adult midgut microflora using culture-dependent and culture-independent methods in lab-reared and field-collected Anopheles stephensi-an Asian malarial vector. BMC Microbiol. 2009, 9: 96-10.1186/1471-2180-9-96.

Gusmão DS, Santos AV, Marini DC, Bacci M, Berbert-Molina MA, Lemos FJA: Culture-dependent and culture-independent characterization of microorganisms associated with Aedes aegypti (Diptera: Culicidae) (L.) and dynamics of bacterial colonization in the midgut. Acta Trop. 2010, 115: 275-281. 10.1016/j.actatropica.2010.04.011.

Chavshin AR, Oshaghi MA, Vatandoost H, Pourmand MR, Raeisi A, Enayati AA, Mardani N, Ghoorchian S: Identification of bacterial microflora in the midgut of the larvae and adult of wild caught Anopheles stephensi: a step toward finding suitable paratransgenesis candidates. Acta Trop. 2012, 121: 129-134. 10.1016/j.actatropica.2011.10.015.

Dinparast Djadid N, Jazayeri H, Raz A, Favia G, Ricci I, Zakeri S: Identification of the midgut microbiota of An. stephensi and An. maculipennis for their application as a paratransgenic tool against malaria. PLoS One. 2011, 6: e28484-10.1371/journal.pone.0028484.

Zouache K, Raharimalala FN, Raquin V, Tran-Van V, Raveloson LHR, Ravelonandro P, Mavingui P: Bacterial diversity of field-caught mosquitoes, Aedes albopictus and Aedes aegypti, from different geographic regions of Madagascar. FEMS Microbiol Ecol. 2011, 75: 377-389. 10.1111/j.1574-6941.2010.01012.x.

Ramirez JL, Souza-Neto J, Torres Cosme R, Rovira J, Ortiz A, Pascale JM, Dimopoulos G: Reciprocal tripartite interactions between the Aedes aegypti midgut microbiota, innate immune system and dengue virus influences vector competence. PLoS Negl Trop Dis. 2012, 6: e1561-10.1371/journal.pntd.0001561.

Terenius O, Lindh JM, Eriksson-Gonzales K, Bussière L, Laugen AT, Bergquist H, Titanji K, Faye I: Midgut bacterial dynamics in Aedes aegypti. FEMS Microbiol Ecol. 2012, 80: 556-565. 10.1111/j.1574-6941.2012.01317.x.

Apte-Deshpande A, Paingankar M, Gokhale MD, Deobagkar DN: Serratia odorifera a midgut inhabitant of Aedes aegypti mosquito enhances its susceptibility to dengue-2 virus. PLoS One. 2012, 7: e40401-10.1371/journal.pone.0040401.

Dillon RJ, Dillon VM: The gut bacteria of insects: nonpathogenic interactions. Annu Rev Entomol. 2004, 49: 71-92. 10.1146/annurev.ento.49.061802.123416.

Wang Y, Gilbreath TM, Kukutla P, Yan G, Xu J: Dynamic gut microbiome across life history of the malaria mosquito Anopheles gambiae in Kenya. PLoS One. 2011, 6: e24767-10.1371/journal.pone.0024767.

Boissière A, Tchioffo MT, Bachar D, Abate L, Marie A, Nsango SE, Shahbazkia HR, Awono-Ambene PH, Levashina EA, Christen R, Morlais I: Midgut microbiota of the malaria mosquito vector Anopheles gambiae and interactions with Plasmodium falciparum infection. PLoS Pathog. 2012, 8: e1002742-10.1371/journal.ppat.1002742.

Osei-Poku J, Mbogo CM, Palmer WJ, Jiggins FM: Deep sequencing reveals extensive variation in the gut microbiota of wild mosquitoes from Kenya. Mol Ecol. 2012, 21: 5138-5150. 10.1111/j.1365-294X.2012.05759.x.

Favia G, Ricci I, Damiani C, Raddadi N, Crotti E, Marzorati M, Rizzi A, Urso R, Brusetti L, Borin S, Mora D, Scuppa P, Pasqualini L, Clementi E, Genchi M, Corona S, Negri I, Grandi G, Alma A, Kramer L, Esposito F, Bandi C, Sacchi L, Daffonchio D: Bacteria of the genus Asaia stably associate with Anopheles stephensi, an Asian malarial mosquito vector. Proc Natl Acad Sci USA. 2007, 104: 9047-9051. 10.1073/pnas.0610451104.

Minard G, Tran FH, Raharimalala FN, Hellard E, Ravelonandro P, Mavingui P, Valiente MC: Prevalence, genomic and metabolic profiles of Acinetobacter and Asaia associated with field-caught Aedes albopictus from Madagascar. FEMS Microbiol Ecol. 2013, 83: 63-73. 10.1111/j.1574-6941.2012.01455.x.

Clements AN: The Biology of Mosquitoes: Sensory Reception and Behaviour. 1999, Wallingford: CABI Publishing

Campbell CL, Mummey DL, Schmidtmann ET, Wilson WC: Culture-independent analysis of midgut microbiota in the arbovirus vector Culicoides sonorensis (Diptera: Ceratopogonidae). J Med Entomol. 2004, 41: 340-348. 10.1603/0022-2585-41.3.340.

Crotti E, Rizzi A, Chouaia B, Ricci I, Favia G, Alma A, Sacchi L, Bourtzis K, Mandrioli M, Cherif A, Bandi C, Daffonchio D: Acetic Acid Bacteria, Newly Emerging Symbionts of Insects. Appl Environ Microbiol. 2010, 76: 6963-6970. 10.1128/AEM.01336-10.

Valiente Moro C, Tran FH, Nantenaina Raharimalala F, Ravelonandro P, Mavingui P: Diversity of culturable bacteria including Pantoea in wild mosquito Aedes albopictus. BMC Microbiol. 2013, 13: 70-10.1186/1471-2180-13-70.

Noden BH, Vaughan JA, Pumpuni CB, Beier JC: Mosquito ingestion of antibodies against mosquito midgut microbiota improves conversion of ookinetes to oocysts for Plasmodium falciparum, but not P. yoelii. Parasitol Int. 2011, 60: 440-446. 10.1016/j.parint.2011.07.007.

Oliveira JHM, Gonçalves RLS, Lara FA, Dias FA, Gandara ACP, Menna-Barreto RFS, Edwards MC, Laurindo FRM, Silva-Neto MAC, Sorgine MHF, Oliveira PL: Blood meal-derived heme decreases ROS levels in the midgut of Aedes aegypti and allows proliferation of intestinal microbiota. PLoS Pathog. 2011, 7: e1001320-10.1371/journal.ppat.1001320.

De Gaio AO, Gusmão DS, Santos AV, Berbert-Molina MA, Pimenta PF, Lemos FJ: Contribution of midgut bacteria to blood digestion and egg production in Aedes aegypti (diptera: culicidae) (L.). Parasites Vectors. 2011, 4: 105-10.1186/1756-3305-4-105.

Douglas AE: Mycetocyte symbiosis in insects. Biol Rev Camb Philos Soc. 1989, 64: 409-434. 10.1111/j.1469-185X.1989.tb00682.x.

Baumann P: Biology bacteriocyte-associated endosymbionts of plant sap-sucking insects. Annu Rev Microbiol. 2005, 59: 155-189. 10.1146/annurev.micro.59.030804.121041.

Damiani C, Ricci I, Crotti E, Rossi P, Rizzi A, Scuppa P, Capone A, Ulissi U, Epis S, Genchi M, Sagnon N, Faye I, Kang A, Chouaia B, Whitehorn C, Moussa GW, Mandrioli M, Esposito F, Sacchi L, Bandi C, Daffonchio D, Favia G: Mosquito-bacteria symbiosis: the case of Anopheles gambiae and Asaia. Microb Ecol. 2010, 60: 644-654. 10.1007/s00248-010-9704-8.

Dobson SL, Bourtzis K, Braig HR, Jones BF, Zhou W, Rousset F, O’Neill SL: Wolbachia infections are distributed throughout insect somatic and germ line tissues. Insect Biochem Mol Biol. 1999, 29: 153-160. 10.1016/S0965-1748(98)00119-2.

Zouache K, Voronin D, Tran-Van V, Mousson L, Failloux A-B, Mavingui P: Persistent Wolbachia and cultivable bacteria infection in the reproductive and somatic tissues of the mosquito vector Aedes albopictus. PLoS One. 2009, 4: e6388-10.1371/journal.pone.0006388.

Foster WA: Mosquito Sugar Feeding and Reproductive Energetics. Ann Rev Entomol. 1995, 40: 443-474. 10.1146/annurev.en.40.010195.002303.

Nation JL: Insect Physiology and Biochemistry. 2002, Boca Raton, Florida: CRC Press

Gelperin A: Regulation of Feeding. Ann Rev Entomol. 1971, 16: 365-378. 10.1146/annurev.en.16.010171.002053.

Gusmão DS, Santos AV, Marini DC, De Russo ES, Peixoto AMD, Bacci Júnior M, Berbert-Molina MA, Lemos FJA: First isolation of microorganisms from the gut diverticulum of Aedes aegypti (Diptera: Culicidae): new perspectives for an insect-bacteria association. Mem Inst Oswaldo Cruz. 2007, 102: 919-924. 10.1590/S0074-02762007000800005.

Kumar S, Molina-Cruz A, Gupta L, Rodrigues J, Barillas-Mury C: A peroxidase/dual oxidase system modulates midgut epithelial immunity in Anopheles gambiae. Science. 2010, 327: 1644-1648. 10.1126/science.1184008.

Benoit JB, Lopez-Martinez G, Patrick KR, Phillips ZP, Krause TB, Denlinger DL: Drinking a hot blood meal elicits a protective heat shock response in mosquitoes. Proc Natl Acad Sci USA. 2011, 108: 8026-8029. 10.1073/pnas.1105195108.

Kittayapong P, Baisley KJ, Sharpe RG, Baimai V, O’Neill SL: Maternal transmission efficiency of Wolbachia superinfections in Aedes albopictus populations in Thailand. Am J Trop Med Hyg. 2002, 66: 103-107.

Cook PE, McGraw EA: Wolbachia pipientis: an expanding bag of tricks to explore for disease control. Trends Parasitol. 2010, 26: 373-375. 10.1016/j.pt.2010.05.006.

Thiery I, Nicolas L, Rippka R, De Tandeau MN: Selection of cyanobacteria isolated from mosquito breeding sites as a potential food source for mosquito larvae. Appl Environ Microbiol. 1991, 57: 1354-1359.

Vázquez-Martínez MG, Rodríguez MH, Arredondo-Jiménez JI, Méndez-Sanchez JD, Bond-Compeán JG, Cold-Morgan M: Cyanobacteria associated with Anopheles albimanus (Diptera: Culicidae) larval habitats in southern Mexico. J Med Entomol. 2002, 39: 825-832. 10.1603/0022-2585-39.6.825.

Moncayo AC, Lerdthusnee K, Leon R, Robich RM, Romoser WS: Meconial peritrophic matrix structure, formation, and meconial degeneration in mosquito pupae/pharate adults: histological and ultrastructural aspects. J Med Entomol. 2005, 42: 939-944. 10.1603/0022-2585(2005)042[0939:MPMSFA]2.0.CO;2.

Moll RM, Romoser WS, Modrzakowski MC, Moncayo AC, Lerdthusnee K: Meconial peritrophic membranes and the fate of midgut bacteria during mosquito (Diptera: Culicidae) metamorphosis. J Med Entomol. 2001, 38: 29-32. 10.1603/0022-2585-38.1.29.

Jung JY, Park MS, Kim SE, Park BH, Son JY, Kim EY, Lim JE, Lee SK, Lee SH, Lee KJ, Kang YA, Kim SK, Chang J, Kim YS: Risk factors for multi-drug resistant Acinetobacter baumannii bacteremia in patients with colonization in the intensive care unit. BMC Infect Dis. 2010, 10: 228-10.1186/1471-2334-10-228.

Shi Y, Lou K, Li C: Growth and photosynthetic efficiency promotion of sugar beet (Beta vulgaris L.) by endophytic bacteria. Photosynthesis Res. 2010, 105: 5-13. 10.1007/s11120-010-9547-7.

Lindh JM, Borg-Karlson A-K, Faye I: Transstadial and horizontal transfer of bacteria within a colony of Anopheles gambiae (Diptera: Culicidae) and oviposition response to bacteria-containing water. Acta Trop. 2008, 107: 242-250. 10.1016/j.actatropica.2008.06.008.

Chouaia B, Rossi P, Montagna M, Ricci I, Crotti E, Damiani C, Epis S, Faye I, Sagnon N, Alma A, Favia G, Daffonchio D, Bandi C: Molecular evidence for multiple infections as revealed by typing of Asaia bacterial symbionts of four mosquito species. Appl Environ Microbiol. 2010, 76: 7444-7450. 10.1128/AEM.01747-10.

Moënne-Loccoz Y, Mavingui P, Combes C, Normand P, Steinberg C: Micro-organismes et interactions biotiques. Ecologie microbienne: Microbiologie des milieux naturels et anthropisés. Edited by: Bertrand J-C, Caumette P, Lebaron P, Matheron R, Normand P. 2011, : Publications de l’Université de Pau et des Pays de l’Adour, 413-470.

Reid G, Younes JA, Van der Mei HC, Gloor GB, Knight R, Busscher HJ: Microbiota restoration: natural and supplemented recovery of human microbial communities. Nat Rev Microbiol. 2011, 9: 27-38. 10.1038/nrmicro2473.

Dillon R, Charnley K: Mutualism between the desert locust Schistocerca gregaria and its gut microbiota. Res Microbiol. 2002, 153: 503-509. 10.1016/S0923-2508(02)01361-X.

Dong Y, Manfredini F, Dimopoulos G: Implication of the mosquito midgut microbiota in the defense against malaria parasites. PLoS Pathog. 2009, 5: e1000423-10.1371/journal.ppat.1000423.

Zouache K, Michelland RJ, Failloux A-B, Grundmann GL, Mavingui P: Chikungunya virus impacts the diversity of symbiotic bacteria in mosquito vector. Mol Ecol. 2012, 21: 2297-2309. 10.1111/j.1365-294X.2012.05526.x.

Aksoy S: Tsetse–A haven for microorganisms. Parasitol Today (Regul Ed). 2000, 16: 114-118. 10.1016/S0169-4758(99)01606-3.

Peck GW, Walton WE: Effect of bacterial quality and density on growth and whole body stoichiometry of Culex quinquefasciatus and Culex tarsalis (Diptera: Culicidae). J Med Entomol. 2006, 43: 25-33. 10.1603/0022-2585(2006)043[0025:EOBQAD]2.0.CO;2.

Fouda MA, Hassan MI, Al-Daly AG, Hammad KM: Effect of midgut bacteria of Culex pipiens L. on digestion and reproduction. J Egypt Soc Parasitol. 2001, 31: 767-780.

Verhulst NO, Andriessen R, Groenhagen U, Bukovinszkiné Kiss G, Schulz S, Takken W, Van Loon JJA, Schraa G, Smallegange RC: Differential attraction of malaria mosquitoes to volatile blends produced by human skin bacteria. PLoS One. 2010, 5: e15829-10.1371/journal.pone.0015829.

Ponnusamy L, Böröczky K, Wesson DM, Schal C, Apperson CS: Bacteria stimulate hatching of yellow fever mosquito eggs. PLoS One. 2011, 6: e24409-10.1371/journal.pone.0024409.

Kikuchi Y, Hosokawa T, Fukatsu T: An ancient but promiscuous host-symbiont association between Burkholderia gut symbionts and their heteropteran hosts. ISME J. 2011, 5: 446-460. 10.1038/ismej.2010.150.

Berticat C, Rousset F, Raymond M, Berthomieu A, Weill M: High Wolbachia density in insecticide-resistant mosquitoes. Proc Biol Sci. 2002, 269: 1413-1416. 10.1098/rspb.2002.2022.

Chouaia B, Rossi P, Epis S, Mosca M, Ricci I, Damiani C, Ulissi U, Crotti E, Daffonchio D, Bandi C, Favia G: Delayed larval development in Anopheles mosquitoes deprived of Asaia bacterial symbionts. BMC Microbiol. 2012, 12 (Suppl 1): S2-10.1186/1471-2180-12-S1-S2.

Damiani C, Ricci I, Crotti E, Rossi P, Rizzi A, Scuppa P, Esposito F, Bandi C, Daffonchio D, Favia G: Paternal transmission of symbiotic bacteria in malaria vectors. Curr Biol. 2008, 18: R1087-R1088. 10.1016/j.cub.2008.10.040.

David J-P, Coissac E, Melodelima C, Poupardin R, Riaz MA, Chandor-Proust A, Reynaud S: Transcriptome response to pollutants and insecticides in the dengue vector Aedes aegypti using next-generation sequencing technology. BMC Genomics. 2010, 11: 216-10.1186/1471-2164-11-216.

Robinson AS: Genetic sexing strains in medfly, Ceratitis capitata, sterile insect technique programmes. Genetica. 2002, 116: 5-13. 10.1023/A:1020951407069.

Alphey L: Re-engineering the sterile insect technique. Insect Biochem Mol Biol. 2002, 32: 1243-1247. 10.1016/S0965-1748(02)00087-5.

Benedict MQ, Robinson AS: The first releases of transgenic mosquitoes: an argument for the sterile insect technique. Trends Parasitol. 2003, 19: 349-355. 10.1016/S1471-4922(03)00144-2.

Munhenga G, Brooke BD, Chirwa TF, Hunt RH, Coetzee M, Govender D, Koekemoer LL: Evaluating the potential of the sterile insect technique for malaria control: relative fitness and mating compatibility between laboratory colonized and a wild population of Anopheles arabiensis from the Kruger National Park, South Africa. Parasites Vectors. 2011, 4: 208-10.1186/1756-3305-4-208.

Werren JH, Baldo L, Clark ME: Wolbachia: master manipulators of invertebrate biology. Nat Rev Microbiol. 2008, 6: 741-751. 10.1038/nrmicro1969.

Fu Y, Gavotte L, Mercer DR, Dobson SL: Artificial triple Wolbachia infection in Aedes albopictus yields a new pattern of unidirectional cytoplasmic incompatibility. Appl Environ Microbiol. 2010, 76: 5887-5891. 10.1128/AEM.00218-10.

Atyame CM, Duron O, Tortosa P, Pasteur N, Fort P, Weill M: Multiple Wolbachia determinants control the evolution of cytoplasmic incompatibilities in Culex pipiens mosquito populations. Mol Ecol. 2011, 20: 286-298. 10.1111/j.1365-294X.2010.04937.x.

Ruang-Areerate T, Kittayapong P: Wolbachia transinfection in Aedes aegypti: a potential gene driver of dengue vectors. Proc Natl Acad Sci USA. 2006, 103: 12534-12539. 10.1073/pnas.0508879103.

Marrelli MT, Moreira CK, Kelly D, Alphey L, Jacobs-Lorena M: Mosquito transgenesis: what is the fitness cost?. Trends Parasitol. 2006, 22: 197-202. 10.1016/j.pt.2006.03.004.

Coutinho-Abreu IV, Zhu KY, Ramalho-Ortigao M: Transgenesis and paratransgenesis to control insect-borne diseases: current status and future challenges. Parasitol Int. 2010, 59: 1-8. 10.1016/j.parint.2009.10.002.

Hurwitz I, Hillesland H, Fieck A, Das P, Durvasula R: The paratransgenic sand fly: A platform for control of Leishmania transmission. Parasites Vectors. 2011, 4: 82-10.1186/1756-3305-4-82.

Bisi DC, Lampe DJ: Secretion of anti-Plasmodium effector proteins from a natural Pantoea agglomerans isolate by using PelB and HlyA secretion signals. Appl Environ Microbiol. 2011, 77: 4669-4675. 10.1128/AEM.00514-11.

Lambrechts L, Scott TW: Mode of transmission and the evolution of arbovirus virulence in mosquito vectors. Proc Biol Sci. 2009, 276: 1369-1378. 10.1098/rspb.2008.1709.

Kambris Z, Blagborough AM, Pinto SB, Blagrove MSC, Godfray HCJ, Sinden RE, Sinkins SP: Wolbachia stimulates immune gene expression and inhibits plasmodium development in Anopheles gambiae. PLoS Pathog. 2010, 6: e1001143-10.1371/journal.ppat.1001143.

Walker T, Moreira LA: Can Wolbachia be used to control malaria?. Mem Inst Oswaldo Cruz. 2011, 106 (Suppl 1): 212-217.

Glaser RL, Meola MA: The native Wolbachia endosymbionts of Drosophila melanogaster and Culex quinquefasciatus increase host resistance to West Nile virus infection. PLoS One. 2010, 5: e11977-10.1371/journal.pone.0011977.

Mousson L, Zouache K, Arias-Goeta C, Raquin V, Mavingui P, Failloux A-B: The Native Wolbachia Symbionts Limit Transmission of Dengue Virus in Aedes albopictus. PLoS Negl Trop Dis. 2012, 6: e1989-10.1371/journal.pntd.0001989.

Mideo N: Parasite adaptations to within-host competition. Trends Parasitol. 2009, 25: 261-268. 10.1016/j.pt.2009.03.001.

Pan X, Zhou G, Wu J, Bian G, Lu P, Raikhel AS, Xi Z: Wolbachia induces reactive oxygen species (ROS)-dependent activation of the Toll pathway to control dengue virus in the mosquito Aedes aegypti. Proc Natl Acad Sci USA. 2012, 109: E23-E31. 10.1073/pnas.1116932108.

Cirimotich CM, Ramirez JL, Dimopoulos G: Native microbiota shape insect vector competence for human pathogens. Cell Host Microbe. 2011, 10: 307-310. 10.1016/j.chom.2011.09.006.

Joyce JD, Nogueira JR, Bales AA, Pittman KE, Anderson JR: Interactions between La Crosse virus and bacteria isolated from the digestive tract of Aedes albopictus (Diptera: Culicidae). J Med Entomol. 2011, 48: 389-394. 10.1603/ME09268.

González JM, Brown BJ, Carlton BC: Transfer of Bacillus thuringiensis plasmids coding for delta-endotoxin among strains of B. thuringiensis and B. cereus. Proc Natl Acad Sci USA. 1982, 79: 6951-6955. 10.1073/pnas.79.22.6951.

Schnepf E, Crickmore N, Van Rie J, Lereclus D, Baum J, Feitelson J, Zeigler DR, Dean DH: Bacillus Thuringiensis and Its Pesticidal Crystal Proteins. Microbiol Mol Biol Rev. 1998, 62: 775-806.

Bravo A, Gill SS, Soberón M: Mode of action of Bacillus thuringiensis Cry and Cyt toxins and their potential for insect control. Toxicon. 2007, 49: 423-435. 10.1016/j.toxicon.2006.11.022.

Berry C: The bacterium, Lysinibacillus sphaericus, as an insect pathogen. J Invertebr Pathol. 2012, 109: 1-10. 10.1016/j.jip.2011.11.008.

Majambere S, Lindsay SW, Green C, Kandeh B, Fillinger U: Microbial larvicides for malaria control in The Gambia. Malar J. 2007, 6: 76-10.1186/1475-2875-6-76.

Nartey R, Owusu-Dabo E, Kruppa T, Baffour-Awuah S, Annan A, Oppong S, Becker N, Obiri-Danso K: Use of Bacillus thuringiensis var israelensis as a viable option in an Integrated Malaria Vector Control Programme in the Kumasi Metropolis, Ghana. Parasites Vectors. 2013, 6: 116-10.1186/1756-3305-6-116.

Yiallouros M, Storch V, Thiery I, Becker N: Efficacy of Clostridium bifermentans serovar Malaysia on target and nontarget organisms. J Am Mosq Control Assoc. 1994, 10: 51-55.

Geetha I, Manonmani AM, Paily KP: Identification and characterization of a mosquito pupicidal metabolite of a Bacillus subtilis subsp. subtilis strain. Appl Microbiol Biotechnol. 2010, 86: 1737-1744. 10.1007/s00253-010-2449-y.