Đặc điểm và sự phong phú của gen oxy hóa arsenit aioA tại các khu vực địa nhiệt của Tengchong, Vân Nam, Trung Quốc

Springer Science and Business Media LLC - Tập 18 - Trang 161-170 - 2013
Zhou Jiang1,2, Ping Li1, Dawei Jiang1, Geng Wu1, Hailiang Dong1,3, Yanhong Wang1,2, Bing Li1,2, Yanxin Wang1,2, Qinghai Guo1,2
1State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, People’s Republic of China
2School of Environmental Studies, China University of Geosciences, Wuhan, People’s Republic of China
3Department of Geology and Environmental Earth Science, Miami University, Oxford, USA

Tóm tắt

Tổng cộng 12 mẫu đã được thu thập từ các khu vực địa nhiệt Tengchong của Vân Nam, Trung Quốc, nhằm mục đích đánh giá tiềm năng oxy hóa arsenit (AsIII) của các quần thể vi sinh vật hiện có, như được suy luận từ sự phong phú và đa dạng của gen tiểu đơn vị lớn oxy hóa AsIII aioA tương quan với bối cảnh địa hóa học. Nồng độ arsenic cao hơn (trung bình 251,68 μg/L) trong các suối trung tính hoặc kiềm so với các suối axit (trung bình 30,88 μg/L). Sự phong phú của aioA dao động từ 1,63 × 10¹ đến 7,08 × 10³ trên mỗi ng DNA và có mối tương quan tích cực với sulfide và tỷ lệ arsenate (AsV): tổng arsenic hòa tan (AsTot). Dựa trên ước lượng qPCR về sự phong phú của gen 16S rRNA vi khuẩn và vi khuẩn cổ, các sinh vật mang aioA chiếm đến khoảng 15 % tổng quần thể. Về mặt phát sinh loài, các chuỗi aioA chủ yếu (tổng số 270) trong các suối nước nóng axit (pH 3,3–4,4) có liên quan đến Aquificales và Rhizobiales, trong khi đó các chuỗi trong các suối trung tính hoặc kiềm (pH 6,6–9,1) chủ yếu là vi khuẩn liên quan đến Thermales và Burkholderiales. Thú vị thay, sự phong phú của aioA tại một địa điểm vượt trội hơn nhiều so với sự phong phú của gen 16S rRNA vi khuẩn, cho thấy những gen aioA này có thể là của vi khuẩn cổ mặc dù về mặt phát sinh loài, các chuỗi aioA này tương đồng nhất với Aquificales. Tóm lại, nghiên cứu này đã miêu tả các chuỗi aioA mới trong các đặc điểm địa nhiệt cách xa so với các khu vực trong tổ hợp địa nhiệt Yellowstone đã được nghiên cứu nhiều.

Từ khóa

#arsenite #aioA #vi sinh vật #địa nhiệt #Vân Nam #Trung Quốc #oxy hóa #phát sinh loài

Tài liệu tham khảo

Andres J, Arsene-Ploetze F, Barbe V, Brochier-Armanet C, Cleiss-Arnold J, Coppee JY, Dillies MA, Geist L, Joublin A, Koechler S, Lassalle F, Marchal M, Medigue C, Muller D, Nesme X, Plewniak F, Proux C, Ramirez-Bahena MH, Schenowitz C, Sismeiro O, Vallenet D, Santini JM, Bertin PN (2013) Life in an arsenic-containing gold mine: genome and physiology of the autotrophic arsenite-oxidizing bacterium Rhizobium sp. NT-26. Genome Biol Evol 5:934–953 Birkle P, Bundschuh J, Sracek O (2010) Mechanisms of arsenic enrichment in geothermal and petroleum reservoirs fluids in Mexico. Water Res 44:5605–5617 Boto L (2010) Horizontal gene transfer in evolution: facts and challenges. Proc R Soc B Biol Sci 277:819–827 Burgess EA, Unrine JM, Mills GL, Romanek CS, Wiegel J (2012) Comparative geochemical and microbiological characterization of two thermal pools in the Uzon Caldera, Kamchatka, Russia. Microb Ecol 63:471–489 Clingenpeel SR, D’Imperio S, Oduro H, Druschel GK, McDermott TR (2009) Cloning and in situ expression studies of the Hydrogenobaculum arsenite oxidase genes. Appl Environ Microbiol 75:3362–3365 Connon SA, Koski AK, Neal AL, Wood SA, Magnuson TS (2008) Ecophysiology and geochemistry of microbial arsenic oxidation within a high arsenic, circumneutral hot spring system of the Alvord Desert. FEMS Microbiol Ecol 64:117–128 Cuebas M, Sannino D, Bini E (2011) Isolation and characterization of arsenic resistant Geobacillus kaustophilus strain from geothermal soils. J Basic Microbiol 51:364–371 Deng Y, Wang Y, Ma T (2009) Isotope and minor element geochemistry of high arsenic groundwater from Hangjinhouqi, the Hetao Plain, Inner Mongolia. Appl Geochem 24:587–599 D’Imperio S, Lehr CR, Breary M, McDermott TR (2007) Autecology of an arsenite chemolithotroph: sulfide constraints on function and distribution in a geothermal spring. Appl Environ Microbiol 73:7067–7074 Donahoe-Christiansen J, D’Imperio S, Jackson CR, Inskeep WP, McDermott TR (2004) Arsenite-oxidizing Hydrogenobaculum strain isolated from an acid-sulfate-chloride geothermal spring in Yellowstone National Park. Appl Environ Microbiol 70:1865–1868 Du J, Liu C, Fu B, Ninomiya Y, Zhang Y, Wang C, Wang H, Sun Z (2005) Variations of geothermometry and chemical-isotopic compositions of hot spring fluids in the Rehai geothermal field, southwestern China. J Volcanol Geotherm Res 142:243–261 Engel AS, Johnson LR, Porter ML (2013) Arsenite oxidase gene diversity among Chloroflexi and Proteobacteria from El Tatio Geyser Field, Chile. FEMS Microbiol Ecol 83:745–756 Fisher JC, Wallschlager D, Planer-Friedrich B, Hollibaugh JT (2008) A new role for sulfur in arsenic cycling. Environ Sci Technol 42:81–85 Guo Q (2012) Hydrogeochemistry of high-temperature geothermal systems in China: a review. Appl Geochem 27:1887–1898 Guo Q, Wang Y (2012) Geochemistry of hot springs in the Tengchong hydrothermal areas, Southwestern China. J Volcanol Geotherm Res 215:61–73 Hamamura N, Macur RE, Korf S, Ackerman G, Taylor WP, Kozubal M, Reysenbach AL, Inskeep WP (2009) Linking microbial oxidation of arsenic with detection and phylogenetic analysis of arsenite oxidase genes in diverse geothermal environments. Environ Microbiol 11:421–431 Hamamura N, Macur RE, Liu Y, Inskeep WP, Reysenbach AL (2010) Distribution of aerobic arsenite oxidase genes within the Aquificales. In: Hamamura N, Suzuki S, Mendo S, Barroso CM, Iwata H, Tanabe S (eds) Interdisciplinary studies on environmental chemistry-biological responses to contaminants. TERRAPUB, Tokyo, Japan, pp 47–55 Härtig C, Planer-Friedrich B (2012) Thioarsenate transformation by filamentous microbial mats thriving in an alkaline, sulfidic hot spring. Environ Sci Technol 46:4348–4356 Heinrich-Salmeron A, Cordi A, Brochier-Armanet C, Halter D, Pagnout C, Abbaszadeh-fard E, Montaut D, Seby F, Bertin PN, Bauda P (2011) Unsuspected diversity of arsenite-oxidizing bacteria as revealed by widespread distribution of the aoxB gene in prokaryotes. Appl Environ Microbiol 77:4685–4692 Hetzer A, Morgan HW, McDonald IR, Daughney CJ (2007) Microbial life in champagne pool, a geothermal spring in Waiotapu, New Zealand. Extremophiles 11:605–614 Hou W, Wang S, Dong H, Jiang H, Briggs BR, Peacock JP, Huang Q, Huang L, Wu G, Zhi X (2013) A comprehensive census of microbial diversity in hot springs of Tengchong, Yunnan province China using 16S rRNA gene pyrosequencing. PloS One 8. doi:10.1371/journal.pone.0053350 Inskeep WP, Ackerman GG, Taylor WP, Kozubal M, Korf S, Macur RE (2005) On the energetics of chemolithotrophy in nonequilibrium systems: case studies of geothermal springs in Yellowstone National Park. Geobiology 3(4):297–317 Inskeep WP, Macur RE, Hamamura N, Warelow TP, Ward SA, Santini JM (2007) Detection, diversity and expression of aerobic bacterial arsenite oxidase genes. Environ Microbiol 9:934–943 Jackson CR, Langner HW, Donahoe-Christiansen J, Inskeep WP, McDermott TR (2001) Molecular analysis of microbial community structure in an arsenite-oxidizing acidic thermal spring. Environ Microbiol 3:532–542 Jiang Z, Li P, Wang Y, Li B, Wang Y (2013) Effects of roxarsone on the functional diversity of soil microbial community. Int Biodeter Biodegrad 76:32–35 Klappenbach JA, Saxman PR, Cole JR, Schmidt TM (2001) rrndb: the ribosomal RNA operon copy number database. Nucleic Acids Res 29:181–184 Langner HW, Jackson CR, McDermott TR, Inskeep WP (2001) Rapid oxidation of arsenite in a hot spring ecosystem, Yellowstone National Park. Environ Sci Technol 35:3302–3309 Le XC, Yalcin S, Ma M (2000) Speciation of submicrogram per liter levels of arsenic in water: on-site species separation integrated with sample collection. Environ Sci Technol 34:2342–2347 Lebrun E, Brugna M, Baymann F, Muller D, Lièvremont D, Lett M-C, Nitschke W (2003) Arsenite oxidase, an ancient bioenergetic enzyme. Mol Biol Evol 20:686–693 López DL, Bundschuh J, Birkle P, Armienta MA, Cumbal L, Sracek O, Cornejo L, Ormachea M (2012) Arsenic in volcanic geothermal fluids of Latin America. Sci Total Environ 429:57–75 Mikael Sehlin H, Börje Lindström E (1992) Oxidation and reduction of arsenic by Sulfolobus acidocaldarius strain BC. FEMS Microbiol Lett 93:87–92 Nadkarni MA, Martin FE, Jacques NA, Hunter N (2002) Determination of bacterial load by real-time PCR using a broad-range (universal) probe and primers set. Microbiology 148:257–266 Nakagawa S, Shtaih Z, Banta A, Beveridge T, Sako Y, Reysenbach A-L (2005) Sulfurihydrogenibium yellowstonense sp. nov., an extremely thermophilic, facultatively heterotrophic, sulfur-oxidizing bacterium from Yellowstone National Park, and emended descriptions of the genus Sulfurihydrogenibium, Sulfurihydrogenibium subterraneum and Sulfurihydrogenibium azorense. Int J Syst Evol Microbiol 55:2263–2268 Pagaling E, Grant WD, Cowan DA, Jones BE, Ma Y, Ventosa A, Heaphy S (2012) Bacterial and archaeal diversity in two hot spring microbial mats from the geothermal region of Tengchong, China. Extremophiles 16:607–618 Quéméneur M, Heinrich-Salmeron A, Muller D, Lièvremont D, Jauzein M, Bertin PN, Garrido F, Joulian C (2008) Diversity surveys and evolutionary relationships of aoxB genes in aerobic arsenite-oxidizing bacteria. Appl Environ Microbiol 74:4567–4573 Quéméneur M, Cébron A, Billard P, Battaglia-Brunet F, Garrido F, Leyval C, Joulian C (2010) Population structure and abundance of arsenite-oxidizing bacteria along an arsenic pollution gradient in waters of the Upper Isle River Basin, France. Appl Environ Microbiol 76:4566–4570 Rhine E, Ni Chadhain S, Zylstra G, Young L (2007) The arsenite oxidase genes (aroAB) in novel chemoautotrophic arsenite oxidizers. Biochem Biophys Res Co 354:662–667 Shangguan Z, Zhao C, Li H, Gao Q, Sun M (2005) Evolution of hydrothermal explosions at Rehai geothermal field, Tengchong volcanic region, China. Geothermics 34(4):518–526 Song ZQ, Chen JQ, Jiang HC, Zhou EM, Tang SK, Zhi XY, Zhang LX, Zhang CLL, Li WJ (2010) Diversity of Crenarchaeota in terrestrial hot springs in Tengchong, China. Extremophiles 14:287–296 Song ZQ, Wang FP, Zhi XY, Chen JQ, Zhou EM, Liang F, Xiao X, Tang SK, Jiang HC, Zhang CL, Dong H, Li WJ (2013) Bacterial and archaeal diversities in Yunnan and Tibetan hot springs, China. Environ Microbiol 15:1160–1175 Sultana M, Vogler S, Zargar K, Schmidt AC, Saltikov C, Seifert J, Schlomann M (2012) New clusters of arsenite oxidase and unusual bacterial groups in enrichments from arsenic-contaminated soil. Arch Microbiol 194:623–635 Takai K, Horikoshi K (2000) Rapid detection and quantification of members of the archaeal community by quantitative PCR using fluorogenic probes. Appl Environ Microbiol 66:5066–5072 Zhang G, Liu C-Q, Liu H, Jin Z, Han G, Li L (2008) Geochemistry of the Rehai and Ruidian geothermal waters, Yunnan Province, China. Geothermics 37:73–83