Diverse Role of TGF-β in Kidney Disease

Yue-Yu Gu1,2, Xusheng Liu2, Kwong Wai Choy1,3, Xueqing Yu3, Hui‐Yao Lan1,3
1Department of Medicine and Therapeutics, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, China
2Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, Department of Nephrology, Guangdong Provincial Hospital of Chinese Medicine, The Second Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, China
3Guangdong-Hong Kong Joint Laboratory for Immunity and Genetics of Chronic Kidney Disease, Guangdong Academy of Medical Sciences, Guangdong Provincial People‘s Hospital, Guangzhou, China

Tóm tắt

Từ khóa


Tài liệu tham khảo

Akagi, 1996, Inhibition of TGF-beta 1 expression by antisense oligonucleotides suppressed extracellular matrix accumulation in experimental glomerulonephritis., Kidney Int., 50, 148, 10.1038/ki.1996.297

Ando, 1995, Localization of transforming growth factor-beta and latent transforming growth factor-beta binding protein in rat kidney., Kidney Int., 47, 733, 10.1038/ki.1995.112

Annes, 2003, Making sense of latent TGFbeta activation., J. Cell Sci., 116, 217, 10.1242/jcs.00229

Bitzer, 2000, A mechanism of suppression of TGF-beta/SMAD signaling by NF-kappa B/RelA., Genes Dev., 14, 187, 10.1101/gad.14.2.187

Border, 1990, Suppression of experimental glomerulonephritis by antiserum against transforming growth factor beta 1., Nature, 346, 371, 10.1038/346371a0

Bottinger, 1996, The recombinant proregion of transforming growth factor beta1 (latency-associated peptide) inhibits active transforming growth factor beta1 in transgenic mice., Proc. Natl. Acad. Sci. U.S.A., 93, 5877, 10.1073/pnas.93.12.5877

Chau, 2012, MicroRNA-21 promotes fibrosis of the kidney by silencing metabolic pathways., Sci. Transl. Med., 4, 10.1126/scitranslmed.3003205

Chen, 2011, The protective role of Smad7 in diabetic kidney disease: mechanism and therapeutic potential., Diabetes, 60, 590, 10.2337/db10-0403

Chen, 2014, MicroRNA-29b inhibits diabetic nephropathy in db/db mice., Mol. Ther., 22, 842, 10.1038/mt.2013.235

Chen, 2018, Central role of dysregulation of TGF-beta/Smad in CKD progression and potential targets of its treatment., Biomed. Pharmacother., 101, 670, 10.1016/j.biopha.2018.02.090

Chen, 2003, Reversibility of established diabetic glomerulopathy by anti-TGF-β antibodies in db/db mice., Biochem. Biophys. Res. Commun., 300, 16, 10.1016/s0006-291x(02)02708-0

Cho, 2007, Pirfenidone slows renal function decline in patients with focal segmental glomerulosclerosis., Clin. J. Am. Soc. Nephrol., 2, 906, 10.2215/cjn.01050207

Chong, 2006, An expanded WW domain recognition motif revealed by the interaction between Smad7 and the E3 ubiquitin ligase Smurf2., J. Biol. Chem., 281, 17069, 10.1074/jbc.m601493200

Chung, , Smad7 suppresses renal fibrosis via altering expression of TGF-beta/Smad3-regulated microRNAs., Mol. Ther., 21, 388, 10.1038/mt.2012.251

Chung, , miR-192 mediates TGF-beta/Smad3-driven renal fibrosis., J. Am. Soc. Nephrol., 21, 1317, 10.1681/ASN.2010020134

Chung, 2015, MicroRNAs in renal fibrosis., Front. Physiol., 6, 10.3389/fphys.2015.00050

Chung, , MicroRNA and nephropathy: emerging concepts., Int. J. Nephrol. Renovasc. Dis., 6, 169, 10.2147/IJNRD.S37885

Chung, , Advanced glycation end-products induce tubular CTGF via TGF-beta-independent Smad3 signaling., J. Am. Soc. Nephrol., 21, 249, 10.1681/ASN.2009010018

Dai, 2015, Smad7 protects against chronic aristolochic acid nephropathy in mice., Oncotarget, 6, 11930, 10.18632/oncotarget.3718

Derynck, 2003, Smad-dependent and Smad-independent pathways in TGF-beta family signalling., Nature, 425, 577, 10.1038/nature02006

Du, 2018, Combination of Ginsenoside Rg1 and Astragaloside IV reduces oxidative stress and inhibits TGF-beta1/Smads signaling cascade on renal fibrosis in rats with diabetic nephropathy., Drug Des. Devel. Ther., 12, 3517, 10.2147/DDDT.S171286

Duan, 2014, Opposing roles for Smad2 and Smad3 in peritoneal fibrosis in vivo and in vitro., Am. J. Pathol., 184, 2275, 10.1016/j.ajpath.2014.04.014

Dykes, 2017, Transcriptional and post-transcriptional gene regulation by long non-coding RNA., Genomics Proteomics Bioinformatics, 15, 177, 10.1016/j.gpb.2016.12.005

Ebisawa, 2001, Smurf1 interacts with transforming growth factor-beta type I receptor through Smad7 and induces receptor degradation., J. Biol. Chem., 276, 12477, 10.1074/jbc.c100008200

Eddy, 2006, Chronic kidney disease progression., J. Am. Soc. Nephrol., 17, 2964, 10.1681/ASN.2006070704

Edeling, 2016, Developmental signalling pathways in renal fibrosis: the roles of Notch, Wnt and Hedgehog., Nat. Rev. Nephrol., 12, 426, 10.1038/nrneph.2016.54

Ernandez, 2016, The changing landscape of renal inflammation., Trends Mol. Med., 22, 151, 10.1016/j.molmed.2015.12.002

Fan, 1999, Transforming growth factor-beta regulates tubular epithelial-myofibroblast transdifferentiation in vitro., Kidney Int., 56, 1455, 10.1046/j.1523-1755.1999.00656.x

Feng, 2018, TGF-beta mediates renal fibrosis via the Smad3-Erbb4-IR long noncoding RNA axis., Mol. Ther., 26, 148, 10.1016/j.ymthe.2017.09.024

Glassock, 2017, The global burden of chronic kidney disease: estimates, variability and pitfalls., Nat. Rev. Nephrol., 13, 104, 10.1038/nrneph.2016.163

Glowacki, 2013, Increased circulating miR-21 levels are associated with kidney fibrosis., PLoS One, 8, 10.1371/journal.pone.0058014

Gomez-Puerto, 2019, Bone morphogenetic protein receptor signal transduction in human disease., J. Pathol., 247, 9, 10.1002/path.5170

Hall, 2003, The comparative role of activator protein 1 and Smad factors in the regulation of Timp-1 and MMP-1 gene expression by transforming growth factor-beta 1., J. Biol. Chem., 278, 10304, 10.1074/jbc.m212334200

Harskamp, 2016, The epidermal growth factor receptor pathway in chronic kidney diseases., Nat. Rev. Nephrol., 12, 496, 10.1038/nrneph.2016.91

Hayashi, 1997, The MAD-related protein Smad7 associates with the TGFbeta receptor and functions as an antagonist of TGFbeta signaling., Cell, 89, 1165, 10.1016/s0092-8674(00)80303-7

He, 2013, MicroRNA-29 family, a crucial therapeutic target for fibrosis diseases., Biochimie, 95, 1355, 10.1016/j.biochi.2013.03.010

Higgins, 2018, TGF-beta1/p53 signaling in renal fibrogenesis., Cell. Signal., 43, 1, 10.1016/j.cellsig.2017.11.005

Hou, 2005, Ultrasound-microbubble-mediated gene transfer of inducible Smad7 blocks transforming growth factor-beta signaling and fibrosis in rat remnant kidney., Am. J. Pathol., 166, 761, 10.1016/s0002-9440(10)62297-3

Huang, , Mice overexpressing latent TGF-beta1 are protected against renal fibrosis in obstructive kidney disease., Am. J. Physiol. Renal Physiol., 295, F118, 10.1152/ajprenal.00021.2008

Huang, , Latent TGF-beta1 protects against crescentic glomerulonephritis., J. Am. Soc. Nephrol., 19, 233, 10.1681/ASN.2007040484

Isaka, 2018, Targeting TGF-beta signaling in kidney fibrosis., Int. J. Mol. Sci., 19, 10.3390/ijms19092532

Jelencsics, 2015, microRNA and kidney transplantation., Adv. Exp. Med. Biol., 888, 271, 10.1007/978-3-319-22671-2_14

Ju, 2006, Deletion of Smad2 in mouse liver reveals novel functions in hepatocyte growth and differentiation., Mol. Cell. Biol., 26, 654, 10.1128/mcb.26.2.654-667.2006

Ka, 2007, Smad7 gene therapy ameliorates an autoimmune crescentic glomerulonephritis in mice., J. Am. Soc. Nephrol., 18, 1777, 10.1681/asn.2006080901

Ka, 2012, Kidney-targeting Smad7 gene transfer inhibits renal TGF-beta/MAD homologue (SMAD) and nuclear factor kappaB (NF-kappaB) signalling pathways, and improves diabetic nephropathy in mice., Diabetologia, 55, 509, 10.1007/s00125-011-2364-5

Kopp, 1996, Transgenic mice with increased plasma levels of TGF-beta 1 develop progressive renal disease., Lab Invest., 74, 991

Kriegel, 2012, The miR-29 family: genomics, cell biology, and relevance to renal and cardiovascular injury., Physiol. Genomics, 44, 237, 10.1152/physiolgenomics.00141.2011

Kulkarni, 1993, Transforming growth factor beta 1 null mutation in mice causes excessive inflammatory response and early death., Proc. Natl. Acad. Sci. U.S.A., 90, 770, 10.1073/pnas.90.2.770

Kusakabe, 2008, The structure of the TGF-beta latency associated peptide region determines the ability of the proprotein convertase furin to cleave TGF-betas., J. Cell. Biochem., 103, 311, 10.1002/jcb.21407

Lai, 2015, MicroRNA-21 in glomerular injury., J. Am. Soc. Nephrol., 26, 805, 10.1681/ASN.2013121274

Lan, 2008, Smad7 as a therapeutic agent for chronic kidney diseases., Front. Biosci., 13, 4984, 10.2741/3057

Lan, 2011, Diverse roles of TGF-beta/Smads in renal fibrosis and inflammation., Int. J. Biol. Sci., 7, 1056, 10.7150/ijbs.7.1056

Lan, 2012, TGF-beta/Smad signaling in kidney disease., Semin. Nephrol., 32, 236, 10.1016/j.semnephrol.2012.04.002

Lan, 2003, Inhibition of renal fibrosis by gene transfer of inducible Smad7 using ultrasound-microbubble system in rat UUO model., J. Am. Soc. Nephrol., 14, 1535, 10.1097/01.asn.0000067632.04658.b8

Lancaster, 2017, Pirfenidone safety and adverse event management in idiopathic pulmonary fibrosis., Eur. Respir. Rev., 26, 10.1183/16000617.0057-2017

Li, 2017, Inflammation drives renal scarring in experimental pyelonephritis., Am. J. Physiol. Renal Physiol., 312, F43, 10.1152/ajprenal.00471.2016

Li, 2010, Blockade of endothelial-mesenchymal transition by a Smad3 inhibitor delays the early development of streptozotocin-induced diabetic nephropathy., Diabetes, 59, 2612, 10.2337/db09-1631

Li, 2002, Smad7 inhibits fibrotic effect of TGF-Beta on renal tubular epithelial cells by blocking Smad2 activation., J. Am. Soc. Nephrol., 13, 1464, 10.1097/01.asn.0000014252.37680.e4

Li, 2008, TGF-beta: a master of all T cell trades., Cell, 134, 392, 10.1016/j.cell.2008.07.025

Li, 2013, The microRNA miR-433 promotes renal fibrosis by amplifying the TGF-beta/Smad3-Azin1 pathway., Kidney Int., 84, 1129, 10.1038/ki.2013.272

Liu, 2008, Arkadia regulates TGF-beta signaling during renal tubular epithelial to mesenchymal cell transition., Kidney Int., 73, 588, 10.1038/sj.ki.5002713

Liu, 2013, Disruption of Smad7 promotes ANG II-mediated renal inflammation and fibrosis via Sp1-TGF-beta/Smad3-NF.kappaB-dependent mechanisms in mice., PLoS One, 8, 10.1371/journal.pone.0053573

Liu, 2014, Smad7 inhibits AngII-mediated hypertensive nephropathy in a mouse model of hypertension., Clin. Sci., 127, 195, 10.1042/CS20130706

Liu, 2018, Preparation and evaluation of anti-renal fibrosis activity of novel truncated TGF-beta receptor type II., Biotechnol. Appl. Biochem., 65, 834, 10.1002/bab.1667

Liu, 2011, Cellular and molecular mechanisms of renal fibrosis., Nat. Rev. Nephrol., 7, 684, 10.1038/nrneph.2011.149

Liu, 2012, Smad3 mediates ANG II-induced hypertensive kidney disease in mice., Am. J. Physiol. Renal Physiol., 302, F986, 10.1152/ajprenal.00595.2011

Loeffler, 2018, FSP1-specific SMAD2 knockout in renal tubular, endothelial, and interstitial cells reduces fibrosis and epithelial-to-mesenchymal transition in murine STZ-induced diabetic nephropathy., Cell Tissue Res., 372, 115, 10.1007/s00441-017-2754-1

Lopez-Hernandez, 2012, Role of TGF-beta in chronic kidney disease: an integration of tubular, glomerular and vascular effects., Cell Tissue Res., 347, 141, 10.1007/s00441-011-1275-6

Luo, 2017, Signaling cross talk between TGF-beta/Smad and other signaling pathways., Cold Spring Harb. Perspect. Biol., 9, 10.1101/cshperspect.a022137

Lv, 2013, MicroRNA-29c in urinary exosome/microvesicle as a biomarker of renal fibrosis., Am. J. Physiol. Renal Physiol., 305, F1220, 10.1152/ajprenal.00148.2013

Massagué, 2012, TGFβ signalling in context., Nat. Rev. Mol. Cell Biol., 13, 616, 10.1038/nrm3434

McClelland, 2015, miR-21 promotes renal fibrosis in diabetic nephropathy by targeting PTEN and SMAD7., Clin. Sci., 129, 1237, 10.1042/CS20150427

Meng, 2019, Inflammatory mediators and renal fibrosis., Adv. Exp. Med. Biol., 1165, 381, 10.1007/978-981-13-8871-2_18

Meng, 2013, Role of the TGF-beta/BMP-7/Smad pathways in renal diseases., Clin. Sci., 124, 243, 10.1042/CS20120252

Meng, 2010, Smad2 protects against TGF-beta/Smad3-mediated renal fibrosis., J. Am. Soc. Nephrol., 21, 1477, 10.1681/ASN.2009121244

Meng, , Diverse roles of TGF-beta receptor II in renal fibrosis and inflammation in vivo and in vitro., J. Pathol., 227, 175, 10.1002/path.3976

Meng, , Disruption of Smad4 impairs TGF-beta/Smad3 and Smad7 transcriptional regulation during renal inflammation and fibrosis in vivo and in vitro., Kidney Int., 81, 266, 10.1038/ki.2011.327

Meng, 2014, Inflammatory processes in renal fibrosis., Nat. Rev. Nephrol., 10, 493, 10.1038/nrneph.2014.114

Meng, 2016, TGF-beta: the master regulator of fibrosis., Nat Rev Nephrol, 12, 325, 10.1038/nrneph.2016.48

Meng, 2015, Treatment of renal fibrosis by rebalancing TGF-beta/Smad signaling with the combination of asiatic acid and naringenin., Oncotarget, 6, 36984, 10.18632/oncotarget.6100

Mihai, 2018, Inflammation-related mechanisms in chronic kidney disease prediction, progression, and outcome., J. Immunol. Res., 2018, 10.1155/2018/2180373

Miyajima, 2000, Antibody to transforming growth factor-beta ameliorates tubular apoptosis in unilateral ureteral obstruction., Kidney Int., 58, 2301, 10.1046/j.1523-1755.2000.00414.x

Miyazawa, 2017, Regulation of TGF-beta family signaling by inhibitory smads., Cold Spring Harb. Perspect. Biol., 9, 10.1101/cshperspect.a022095

Moghaddas Sani, 2018, Long non-coding RNAs: an essential emerging field in kidney pathogenesis., Biomed. Pharmacother., 99, 755, 10.1016/j.biopha.2018.01.122

Morishita, 2014, siRNAs targeted to Smad4 prevent renal fibrosis in vivo., Sci. Rep., 4, 10.1038/srep06424

Munoz-Felix, 2015, TGF-beta/BMP proteins as therapeutic targets in renal fibrosis. Where have we arrived after 25 years of trials and tribulations?, Pharmacol. Ther., 156, 44, 10.1016/j.pharmthera.2015.10.003

Nagarajan, 2000, Repression of transforming-growth-factor-beta-mediated transcription by nuclear factor kappaB., Biochem. J., 591, 10.1042/bj3480591

Nakao, 1997, Identification of Smad7, a TGFbeta-inducible antagonist of TGF-beta signalling., Nature, 389, 631, 10.1038/39369

Ng, 1999, Glomerular epithelial-myofibroblast transdifferentiation in the evolution of glomerular crescent formation., Nephrol. Dial. Transplant., 14, 2860, 10.1093/ndt/14.12.2860

Ng, 2005, Blockade of NFkappaB activation and renal inflammation by ultrasound-mediated gene transfer of Smad7 in rat remnant kidney., Kidney Int., 94, S83, 10.1111/j.1523-1755.2005.09421.x

Nie, 2014, Effects of astragalus injection on the TGFbeta/Smad pathway in the kidney in type 2 diabetic mice., BMC Complement. Altern. Med., 14, 10.1186/1472-6882-14-148

Nikolic-Paterson, 2014, Macrophages promote renal fibrosis through direct and indirect mechanisms., Kidney Int., 4, 34, 10.1038/kisup.2014.7

Oba, 2010, miR-200b precursor can ameliorate renal tubulointerstitial fibrosis., PLoS One, 5, 10.1371/journal.pone.0013614

Provenzano, 2019, Unraveling cardiovascular risk in renal patients: a new take on old tale., Front. Cell Dev. Biol., 7, 10.3389/fcell.2019.00314

Qi, 2017, High expression of long non-coding RNA ATB is associated with poor prognosis in patients with renal cell carcinoma., Eur. Rev. Med. Pharmacol. Sci., 21, 2835

Qin, 2011, TGF-beta/Smad3 signaling promotes renal fibrosis by inhibiting miR-29., J. Am. Soc. Nephrol., 22, 1462, 10.1681/ASN.2010121308

Qiu, 2017, Transforming growth factor-beta activated long non-coding RNA ATB plays an important role in acute rejection of renal allografts and may impacts the postoperative pharmaceutical immunosuppression therapy., Nephrology, 22, 796, 10.1111/nep.12851

Qu, 2015, The Smad3/Smad4/CDK9 complex promotes renal fibrosis in mice with unilateral ureteral obstruction., Kidney Int., 88, 1323, 10.1038/ki.2015.235

Rane, 2019, Krupsilonppel-like factors (KLFs) in renal physiology and disease., EBioMedicine, 40, 743, 10.1016/j.ebiom.2019.01.021

Roberts, 1991, Multiple forms of TGF-beta: distinct promoters and differential expression., Ciba Found Symp., 157, 7

Romagnani, 2017, Chronic kidney disease., Nat. Rev. Dis. Primers, 3, 10.1038/nrdp.2017.88

Saharinen, 1999, Latent transforming growth factor-beta binding proteins (LTBPs)–structural extracellular matrix proteins for targeting TGF-beta action., Cytokine Growth Factor Rev., 10, 99, 10.1016/s1359-6101(99)00010-6

Samarakoon, 2013, Induction of renal fibrotic genes by TGF-beta1 requires EGFR activation, p53 and reactive oxygen species., Cell. Signal., 25, 2198, 10.1016/j.cellsig.2013.07.007

Sanz, 2010, NF-kappaB in renal inflammation., J. Am. Soc. Nephrol., 21, 1254, 10.1681/ASN.2010020218

Sharma, 2011, Pirfenidone for diabetic nephropathy., J. Am. Soc. Nephrol., 22, 1144, 10.1681/ASN.2010101049

Sun, 2017, Transcriptome identified lncRNAs associated with renal fibrosis in UUO rat model., Front. Physiol., 8, 10.3389/fphys.2017.00658

Sun, 2018, Novel lncRNA Erbb4-IR promotes diabetic kidney injury in db/db mice by targeting miR-29b., Diabetes, 67, 731, 10.2337/db17-0816

Sureshbabu, 2016, TGF-beta signaling in the kidney: profibrotic and protective effects., Am. J. Physiol. Renal Physiol., 310, F596, 10.1152/ajprenal.00365.2015

Sutaria, 1998, Transforming growth factor-beta receptor types I and II are expressed in renal tubules and are increased after chronic unilateral ureteral obstruction., Life Sci., 62, 1965, 10.1016/s0024-3205(98)00166-0

Tang, 2018, Transforming growth factor-beta signalling in renal fibrosis: from Smads to non-coding RNAs., J. Physiol., 596, 3493, 10.1113/JP274492

Tang, 2019, Macrophages: versatile players in renal inflammation and fibrosis., Nat. Rev. Nephrol., 15, 144, 10.1038/s41581-019-0110-2

Tian, 2015, Ubiquitination and regulation of Smad7 in the TGF-beta1/Smad signaling of aristolochic acid nephropathy., Toxicol. Mech. Methods, 25, 645, 10.3109/15376516.2015.1061082

Trachtman, 2011, A phase 1, single-dose study of fresolimumab, an anti-TGF-beta antibody, in treatment-resistant primary focal segmental glomerulosclerosis., Kidney Int., 79, 1236, 10.1038/ki.2011.33

Troncone, 2018, Transforming growth factor-beta1/Smad7 in intestinal immunity, inflammation, and cancer., Front. Immunol., 9, 10.3389/fimmu.2018.01407

Tsuchida, 2003, Role of Smad4 on TGF-beta-induced extracellular matrix stimulation in mesangial cells., Kidney Int., 63, 2000, 10.1046/j.1523-1755.2003.00009.x

Vincenti, 2017, A Phase 2, double-blind, placebo-controlled, randomized study of fresolimumab in patients with steroid-resistant primary focal segmental glomerulosclerosis., Kidney Int. Rep., 2, 800, 10.1016/j.ekir.2017.03.011

Voelker, 2017, Anti-TGF-beta1 antibody therapy in patients with diabetic nephropathy., J. Am. Soc. Nephrol., 28, 953, 10.1681/ASN.2015111230

Wan, 2014, Low-dose of multi-glycoside of Tripterygium wilfordii Hook. f., a natural regulator of TGF-beta1/Smad signaling activity improves adriamycin-induced glomerulosclerosis in vivo., J. Ethnopharmacol., 151, 1079, 10.1016/j.jep.2013.12.005

Wang, 2014, Transforming growth factor-beta1-mediated renal fibrosis is dependent on the regulation of transforming growth factor receptor 1 expression by let-7b., Kidney Int., 85, 352, 10.1038/ki.2013.372

Wang, 2012, Suppression of microRNA-29 expression by TGF-beta1 promotes collagen expression and renal fibrosis., J. Am. Soc. Nephrol., 23, 252, 10.1681/ASN.2011010055

Wang, 2019, Exosome-mediated miR-29 transfer reduces muscle atrophy and kidney fibrosis in mice., Mol. Ther., 27, 571, 10.1016/j.ymthe.2019.01.008

Wang, 2018, Long noncoding RNA lnc-TSI inhibits renal fibrogenesis by negatively regulating the TGF-beta/Smad3 pathway., Sci. Transl. Med., 10, 10.1126/scitranslmed.aat2039

Wang, 2006, Essential role of Smad3 in angiotensin II-induced vascular fibrosis., Circ. Res., 98, 1032, 10.1161/01.res.0000218782.52610.dc

Wang, , Signaling mechanism of TGF-beta1 in prevention of renal inflammation: role of Smad7., J. Am. Soc. Nephrol., 16, 1371, 10.1681/asn.2004121070

Wang, , Transforming growth factor-beta and Smad signalling in kidney diseases., Nephrology, 10, 48, 10.1111/j.1440-1797.2005.00334.x

Wang, 2017, Role of endothelial-to-mesenchymal transition induced by TGF-beta1 in transplant kidney interstitial fibrosis., J. Cell. Mol. Med., 21, 2359, 10.1111/jcmm.13157

Weiskirchen, 2009, BMP-7 as antagonist of organ fibrosis., Front. Biosci., 14, 4992, 10.2741/3583

Xianyuan, 2019, Anti-renal fibrosis effect of asperulosidic acid via TGF-beta1/smad2/smad3 and NF-kappaB signaling pathways in a rat model of unilateral ureteral obstruction., Phytomedicine, 53, 274, 10.1016/j.phymed.2018.09.009

Xiao, 2019, LncRNA ENST00000453774.1 contributes to oxidative stress defense dependent on autophagy mediation to reduce extracellular matrix and alleviate renal fibrosis., J. Cell. Physiol., 234, 9130, 10.1002/jcp.27590

Xie, 2016, Long non-coding RNA-H19 antagonism protects against renal fibrosis., Oncotarget, 7, 51473, 10.18632/oncotarget.10444

Yan, 2011, Smad7: not only a regulator, but also a cross-talk mediator of TGF-beta signalling., Biochem. J., 434, 1, 10.1042/BJ20101827

Yan, 2016, Smad7 Protein Interacts with Receptor-regulated Smads (R-Smads) to Inhibit Transforming Growth Factor-beta (TGF-beta)/Smad Signaling., J. Biol. Chem., 291, 382, 10.1074/jbc.M115.694281

Yan, 2009, Regulation of TGF-beta signaling by Smad7., Acta Biochim. Biophys. Sin., 41, 263, 10.1093/abbs/gmp018

Yang, 2009, Angiotensin II induces connective tissue growth factor and collagen I expression via transforming growth factor-beta-dependent and -independent Smad pathways: the role of Smad3., Hypertension, 54, 877, 10.1161/HYPERTENSIONAHA.109.136531

Yaswen, 1996, Autoimmune manifestations in the transforming growth factor-beta 1 knockout mouse., Blood, 87, 1439, 10.1182/blood.v87.4.1439.bloodjournal8741439

Yu, 2014, MicroRNA-29b inhibits peritoneal fibrosis in a mouse model of peritoneal dialysis., Lab Invest., 94, 978, 10.1038/labinvest.2014.91

Yu, 2019, Gene expression profiling analysis reveals that the long non-coding RNA uc.412 is involved in mesangial cell proliferation., Mol. Med. Rep., 20, 5297, 10.3892/mmr.2019.10753

Zarjou, 2011, Identification of a microRNA signature in renal fibrosis: role of miR-21., Am. J. Physiol. Renal Physiol., 301, F793, 10.1152/ajprenal.00273.2011

Zhang, 2014, miR-29b as a therapeutic agent for angiotensin II-induced cardiac fibrosis by targeting TGF-beta/Smad3 signaling., Mol. Ther., 22, 974, 10.1038/mt.2014.25

Zhang, 2018, The preventive and therapeutic implication for renal fibrosis by targetting TGF-beta/Smad3 signaling., Clin. Sci., 132, 1403, 10.1042/CS20180243

Zhang, 2013, Meeting report - TGF-beta superfamily: signaling in development and disease., J. Cell Sci., 126, 4809, 10.1242/jcs.142398

Zhang, 2019, LRNA9884, a Novel Smad3-Dependent Long Noncoding RNA, Promotes Diabetic Kidney Injury in db/db Mice via Enhancing MCP-1-Dependent Renal Inflammation., Diabetes, 68, 1485, 10.2337/db18-1075

Zhao, 2016, Therapeutic effects of tangshen formula on diabetic nephropathy in rats., PLoS One, 11, 10.1371/journal.pone.0147693

Zhong, 2013, miR-21 is a key therapeutic target for renal injury in a mouse model of type 2 diabetes., Diabetologia, 56, 663, 10.1007/s00125-012-2804-x

Zhong, 2011, Smad3-mediated upregulation of miR-21 promotes renal fibrosis., J. Am. Soc. Nephrol., 22, 1668, 10.1681/ASN.2010111168

Zhou, 2018, Loss of Smad7 promotes inflammation in rheumatoid arthritis., Front. Immunol., 9, 10.3389/fimmu.2018.02537

Zhou, 2019, Livin is involved in TGF-beta1-induced renal tubular epithelial-mesenchymal transition through lncRNA-ATB., Ann. Transl. Med., 7, 10.21037/atm.2019.08.29

Zhou, 2010, Mechanism of chronic aristolochic acid nephropathy: role of Smad3., Am. J. Physiol. Renal Physiol., 298, F1006, 10.1152/ajprenal.00675.2009

Zhou, 2014, Identification of novel long noncoding RNAs associated with TGF-beta/Smad3-mediated renal inflammation and fibrosis by RNA sequencing., Am. J. Pathol., 184, 409, 10.1016/j.ajpath.2013.10.007

Zhou, 2015, Long noncoding RNA Arid2-IR is a novel therapeutic target for renal inflammation., Mol. Ther., 23, 1034, 10.1038/mt.2015.31

Zhou, 2018, Silencing of LncRNA TCONS_00088786 reduces renal fibrosis through miR-132., Eur. Rev. Med. Pharmacol. Sci., 22, 166, 10.26355/eurrev_201801_14114

Zhou, 2013, miR-21-containing microvesicles from injured tubular epithelial cells promote tubular phenotype transition by targeting PTEN protein., Am. J. Pathol., 183, 1183, 10.1016/j.ajpath.2013.06.032

Ziyadeh, 2000, Long-term prevention of renal insufficiency, excess matrix gene expression, and glomerular mesangial matrix expansion by treatment with monoclonal antitransforming growth factor-beta antibody in db/db diabetic mice., Proc. Natl. Acad. Sci. U.S.A., 97, 8015, 10.1073/pnas.120055097