Divalent anion intercalation and etching-hydrolysis strategies to construct ultra-stable electrodes for seawater splitting

Jiajia Lu1,2, Yang Liu3, Han-Pu Liang1,4,5
1Key Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China
2Henan Provincial Key Laboratory of Nanocomposites and Applications, Institute of Nano-Structured Functional Materials, Huanghe Science and Technology College, Zhengzhou, China
3School of Materials Science and Engineering, Henan Normal University, Xinxiang, China
4Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, China
5Shandong Energy Institute, Qingdao, China

Tóm tắt

Developing stable electrodes for seawater splitting remains a great challenge due to the detachment of catalysts at a large operating current and severe anode corrosion caused by chlorine. Herein, divalent anion intercalation and etching-hydrolysis strategies are deployed to synthesize the ultra-stable anode, dendritic Fe(OH)3 grown on Ni(SO4)0.3(OH)1.4-Ni(OH)2. Experimental results reveal that the anode exhibits good activity and excellent stability in alkaline simulated seawater. After 500 h, the current density operated at 1.72 V remains 99.5%, about 210 mA cm−2. The outstanding stability originates from the etching-hydrolysis strategy, which strengthens the interaction between the catalyst and the carrier and retards thus the detachment of catalysts at a large current density. Besides, theoretical simulations confirm that the intercalated divalent anions, such as SO 4 2− and CO 3 2− , can weaken the adsorption strength of chlorine on the surface of catalysts and hinder the coupling and hybridization between chlorine and nickel, which slows down the anode corrosion and improves catalytic stability. Furthermore, the two-electrode system shows the remarkable 95.1% energy efficiency at 2,000 A m−2 and outstanding stability in 6 mol L−1 KOH + seawater at 80 °C.

Tài liệu tham khảo

Dresp S, Dionigi F, Klingenhof M, Strasser P. ACS Energy Lett, 2019, 4: 933–942 Juodkazyté J, Šebeka B, Savickaja I, Petrulevičienė M, Butkutė S, Jasulaitienė V, Selskis A, Ramanauskas R. Int J Hydrogen Energy, 2019, 44: 5929–5939 Li J, Liu Y, Chen H, Zhang Z, Zou X. Adv Funct Mater, 2021, 31: 2101820 Jin H, Liu X, Vasileff A, Jiao Y, Zhao Y, Zheng Y, Qiao SZ. ACS Nano, 2018, 12: 12761–12769 Wang H, Cui M, Fu G, Zhang J, Ding X, Azaceta I, Bugnet M, Kepaptsoglou DM, Lazarov VK, de la Peña O’Shea VA, Oropeza FE, Zhang KHL. Sci China Chem, 2022, 65: 1885–1894 Tong W, Forster M, Dionigi F, Dresp S, Erami RS, Strasser P, Cowan AJ, Farràs P. Nat Energy, 2021, 6: 935 Kirk D, Ledas A. Int J Hydrogen Energy, 1982, 7: 925–932 Bennett J. Int J Hydrogen Energy, 1980, 5: 401–408 Wang C, Shang H, Jin L, Xu H, Du Y. Nanoscale, 2021, 13: 7897–7912 Ma T, Xu W, Li B, Chen X, Zhao J, Wan S, Jiang K, Zhang S, Wang Z, Tian Z, Lu Z, Chen L. Angew Chem Int Ed, 2021, 60: 22740–22744 Zhong H, Wang J, Meng F, Zhang X. Angew Chem Int Ed, 2016, 55: 9937–9941 Xie H, Zhao Z, Liu T, Wu Y, Lan C, Jiang W, Zhu L, Wang Y, Yang D, Shao Z. Nature, 2022, 612: 673–678 Shi H, Wang T, Liu J, Chen W, Li S, Liang J, Liu S, Liu X, Cai Z, Wang C, Su D, Huang Y, Elbaz L, Li Q. Nat Commun, 2023, 14: 3934 Yu H, Wan J, Goodsite M, Jin H. One Earth, 2023, 6: 267–277 Kuang Y, Kenney MJ, Meng Y, Hung WH, Liu Y, Huang JE, Prasanna R, Li P, Li Y, Wang L, Lin MC, McGehee MD, Sun X, Dai H. Proc Natl Acad Sci USA, 2019, 116: 6624–6629 Khatun S, Hirani H, Roy P. J Mater Chem A, 2021, 9: 74–86 Dionigi F, Reier T, Pawolek Z, Gliech M, Strasser P. ChemSusChem, 2016, 9: 962–972 Zou X, Liu Y, Li GD, Wu Y, Liu DP, Li W, Li HW, Wang D, Zhang Y, Zou X. Adv Mater, 2017, 29: 1700404 Zhu L, Lin H, Li Y, Liao F, Lifshitz Y, Sheng M, Lee ST, Shao M. Nat Commun, 2016, 7: 12272 Lee J, Jung H, Park YS, Kwon N, Woo S, Selvam NCS, Han GS, Jung HS, Yoo PJ, Choi SM, Han JW, Lim B. Appl Catal B-Environ, 2021, 294: 120246 Qian G, Yu G, Lu J, Luo L, Wang T, Zhang C, Ku R, Yin S, Chen W, Mu S. J Mater Chem A, 2020, 8: 14545–14554 Li Z, Wang K, Tan X, Liu X, Wang G, Xie G, Jiang L. Chem Eng J, 2021, 424: 130390 Zhang X, Chen N, Wang Y, Wu G, Du X. Int J Hydrogen Energy, 2020, 45: 22921–22928 Chen W, Wu B, Wang Y, Zhou W, Li Y, Liu T, Xie C, Xu L, Du S, Song M, Wang D, Liu Y, Li Y, Liu J, Zou Y, Chen R, Chen C, Zheng J, Li Y, Chen J, Wang S. Energy Environ Sci, 2021, 14: 6428–6440 Hao P, Xin Y, Tian J, Li L, Xie J, Lei F, Tong L, Liu H, Tang B. Sci China Chem, 2020, 63: 1030–1039 Lu J, Deng PJ, Chen A, Yang C, Zhu H, Liang HP. J Mater Chem A, 2023, 11: 2452–2459 Dünnwald J, Otto A. Corrosion Sci, 1989, 29: 1167–1176 Rubim JC. J Chem Soc Faraday Trans 1, 1989, 85: 4247–4258 Rémazeilles C, Refait P. Corrosion Sci, 2007, 49: 844–857 Liao H, Luo T, Tan P, Chen K, Lu L, Liu Y, Liu M, Pan J. Adv Funct Mater, 2021, 31: 2102772 Louie MW, Bell AT. J Am Chem Soc, 2013, 135: 12329–12337 Zhang Y, Su Y, Zhou X, Dai C, Keller AA. J Hazard Mater, 2013, 263: 685–693 Samide A, Tutunaru B, Negrila C, Prunaru I. Spectr Lett, 2012, 45: 55–64 Li W, Li F, Zhao Y, Liu C, Li Y, Yang H, Fan K, Zhang P, Shan Y, Sun L. Sci China Chem, 2022, 65: 382–390 Zhu Y, Wang X, Shi J, Gan L, Huang B, Tao L, Wang S. Sci China Chem, 2022, 65: 1445–1452 Yang H, Gao S, Rao D, Zhang C, Zhou X, Yang S, Ye J, Yang S, Lai F, Yan X. Sci China Chem, 2021, 64: 101–108 Chen H, Zou Y, Li J, Zhang K, Xia Y, Hui B, Yang D. Appl Catal B-Environ, 2021, 293: 120215 Cui B, Hu Z, Liu C, Liu S, Chen F, Hu S, Zhang J, Zhou W, Deng Y, Qin Z, Wu Z, Chen Y, Cui L, Hu W. Nano Res, 2021, 14: 1149–1155 Li Y, Wu X, Wang J, Wei H, Zhang S, Zhu S, Li Z, Wu S, Jiang H, Liang Y. Electrochim Acta, 2021, 390: 138833 Yu L, Wu L, McElhenny B, Song S, Luo D, Zhang F, Yu Y, Chen S, Ren Z. Energy Environ Sci, 2020, 13: 3439–3446 Yu L, Zhu Q, Song S, McElhenny B, Wang D, Wu C, Qin Z, Bao J, Yu Y, Chen S, Ren Z. Nat Commun, 2019, 10: 5106 Kang X, Yang F, Zhang Z, Liu H, Ge S, Hu S, Li S, Luo Y, Yu Q, Liu Z, Wang Q, Ren W, Sun C, Cheng HM, Liu B. Nat Commun, 2023, 14: 3607 Kloprogge JT, Wharton D, Hickey L, Frost RL. Am Miner, 2002, 87: 623–629 Tomikawa K, Kanno H. J Phys Chem A, 1998, 102: 6082–6088 Frost RL, Henry DA, Erickson K. J Raman Spectrosc, 2004, 35: 255–260 Frost RL, Čejka J, Ayoko GA, Dickfos MJ. J Raman Spectrosc, 2008, 39: 374–379 Li H, Ma J, Evans DG, Zhou T, Li F, Duan X. Chem Mater, 2006, 18: 4405–4414 Zhang Y, Lim YV, Huang S, Pam ME, Wang Y, Ang LK, Shi Y, Yang HY. Small, 2018, 14: 1800898 Debnath B, Parvin S, Dixit H, Bhattacharyya S. ChemSusChem, 2020, 13: 3875–3886 Wang Y, Yu W, Zhou B, Xiao W, Wang J, Wang X, Xu G, Li B, Li Z, Wu Z, Wang L. J Mater Chem A, 2022, 11: 1886–1893 Chen H, Zhang S, Liu Q, Yu P, Luo J, Hu G, Liu X. InOrg Chem Commun, 2022, 146: 110170