Sự biến đổi theo chu kỳ ngày trong thân myeloid của biểu mô sắc tố võng mạc ở kỳ nhông

Springer Science and Business Media LLC - Tập 235 - Trang 177-186 - 1984
Marc A. Yorke1, D. Howard Dickson1
1Department of Anatomy, Dalhousie University, Halifax, Canada

Tóm tắt

Thân myeloid (MBs) xuất hiện trong biểu mô sắc tố võng mạc (RPE) của kỳ nhông (Notophthalmus viridescens) và có hình dạng tương tự như các vùng lưới nội bào chuyên biệt được tìm thấy trong nhiều loại tế bào khác nhau. Chức năng của các cấu trúc này chưa được biết rõ, mặc dù vai trò của chúng trong chuyển hóa lipid đã được gợi ý mạnh mẽ. Các mẫu ngẫu nhiên từ RPE của kỳ nhông được cố định và cắt mẫu theo cách thông thường, thu thập trong vòng 24 giờ (LD 12∶12), đã được quan sát bằng kính hiển vi điện tử. Thân myeloid xuất hiện như là các chồng hình túi liên kết với lưới nội bào phẳng, số lượng và độ dài của chúng tăng lên khi RPE tích lũy các vật liệu bị rụng từ đoạn ngoài, trước khi gia tăng lượng lipid được lưu trữ. Sự liên kết giữa MB với màng nhân có thể liên quan đến độ dài tăng lên này. Số lượng thân myeloid giảm đi trong tế bào khi các phagosome được loại bỏ khỏi bào tương, nhưng sự giảm về diện tích trung bình của MB trong giai đoạn ánh sáng lại bị bù đắp trong bóng tối, nơi mà các MB đơn lẻ lớn hơn những MB thấy trong ánh sáng. Diện tích cắt ngang tổng cộng của MBs trong một tế bào và chiều dài trung bình của chúng biến đổi tùy thuộc vào điều kiện ánh sáng; các sự khác biệt cũng được phát hiện giữa các mắt sau những khoảng thời gian dài có ánh sáng và tối liên tục. Ribosome được tìm thấy liên kết với bề mặt của cả thân myeloid phẳng và hình tròn, nhưng chúng thường có sự liên kết dày đặc hơn với các bề mặt lồi ngắn hơn của các vùng cong. Một giả thuyết mới về chức năng của MB được trình bày, liên quan đến vai trò của chúng trong việc cách ly các lipid độc hại như retinoid, tích lũy trong quá trình phagocytosis các đầu đoạn ngoài bị rụng, và có khả năng gây rối loạn các hệ thống ranh giới màng cần thiết cho việc chuyển hóa và lưu trữ an toàn của chúng.

Từ khóa

#myeloid bodies #retinal pigment epithelium #lipid metabolism #newt #electron microscopy

Tài liệu tham khảo

Akahoshi T, Saito T, Yamazaki Y (1979) Ultracytochemical observation of rod outer segment phagocytosis by the retinal pigment epithelium of rat. Acta Histochem Cytochem 12:626 Amar-Costesec A, Beaufay H (1981) A structural basis of enzyme heterogeneity within liver endoplasmic retciulum. J Theor Biol 89:217–230 Arnaud J, Nobili O, Boyer J (1979) Differential properties of lipases active as membrane-bound enzymes in isolated fat cells. Biochim Biophys Acta 572:193–200 Basinger SF, Matthes MT (1980) The effect of long-term constant light on the frog pigment epithelium. Vis Res 20:1143–1149 Basinger S, Hoffman R, Matthes M (1976) Photoreceptor shedding is initiated by light in the frog retina. Science 194:1074–1076 Berman ER, Segal N, Feeney L (1979) Subcellular distribution of free and esterfied forms of Vitamin A in the pigment epithelium of the retina and the liver. Biochim Biophys Acta 572:167–177 Berman ER, Horowitz J, Segal N, Fisher S, Feeney-Burns L (1980) Enzymatic esterification of Vitamin A in the pigment epithelium of the bovine retina. Biochim Biophys Acta 630:36–46 Bibb C, Young RW (1974) Renewal of glycerol in the visual cells and pigment epithelium of the frog retina. J Cell Biol 62:378–389 Blanchette-Mackie EJ, Scow RO (1981a) Membrane continuities within cells and intercellular contacts in white adipose tissue of young rats. J Ultrastruc Res 77:277–294 Blanchette-Mackie EJ, Scow RO (1981b) Lipolysis and lamellar structures in white adipose tissue of young rats: lipid movement in membranes. J Ultrastruc Res 77:295–318 Braekevelt CR (1980) Fine structure of the retinal pigment epithelium in the mud minnow (Umbra limi). Can J Zool 58:258–276 Bradbury S, Meek GS (1958) The fine structure of the adipose cell of the leech, Glossiphonia complota. J Biophys Biochem Cytol 4:603–608 Burger PC, Herdson PB (1966) Phenobarbital-induced fine structural changes in rat liver. Am J Pathol 48:793–809 Carr I, Carr J (1962) Membranous whorls in the testicular interstitial cell. Anat Rec 144:143–147 Christensen AK, Fawcett DW (1966) The fine structure of testicular interstitial cells in mice. Am J Anat 118:551–572 Cruz-Orive LM, Weibel ER (1981) Sampling designs for stereology. J Microsc 122:235–258 Currie JR, Hollyfield JG, Rayborn ME (1978) Rod outer segments elongate in constant light. Darkness is required for normal shedding. Vis Res 18:995–1003 De Laat SW, van der Saag PT, Elson EL, Schlessinger J (1980) Lateral diffusion of membrane lipids and proteins during the cell cycle of neuroblastoma cells. Proc Natl Acad Sci 77:1526–1528 Delmelle M (1978) Retinal sensitized photodynamic damage to liposomes. Photochem Photobiol 28:357–360 Dickson DH, Hollenberg MJ (1971) The fine structure of the pigment epithelium and photoreceptor cells of the newt, Triturus viridescens dorsalis (Rafinesque). J Morphol 135:389–432 Dingle JT, Lucy JA (1962) Studies on the mode of action of excess vitamin A. 5. The effect of vitamin A on the stability of the erythrocyte membrane. Biochem J 84:611–621 Dowling JE (1960) Chemistry of visual adaptation in the rat. Nature 188:114–118 Fell HB, Dingle JT, Webb M (1962) Studies on the mode of action of vitamin A. 4. The specificity of the effect on embryonic chick-limb cartilage in culture and on isolated rat-liver lysosomes. Biochem J 83:63–69 Flight WFG, van Donselaar E (1975a) Ultrastructural aspects of the incorporation of 3H-vitamin A in the pineal organ of the urodele, Diemictylus viridescens viridescens. Proc Koninkl Neder Acad Weten 78:130–142 Flight WFG, van Donselaar E (1975b) On the effects of a prolonged osmium treatment on the ultrastructure of some cells of the pineal organ and the retina in the urodele, Diemictylus viridescens viridescens. Proc Koninkl Neder Acad Weten 78:310–324 Hendrickson AE, Kelly DE (1971) Development of the amphibian pineal organ; fine structure during maturation. Anat Rec 170:129–142 Herwig HJ (1980) Comparative ultrastructural observations on the pineal organ of the pipefish, Syngnatus acus, and the seahorse, Hippocampus hudsonius. Cell Tissue Res 209:187–200 Hollyfield JG, Basinger SF (1978) Cyclic metabolism of photoreceptor cells. Invest Ophthalmol Vis Sci 17:87–89 Jacobson K, Hou Y, Derzko Z, Wojcieszyn J, Organisciak D (1982) A comparison of lipid lateral diffusion in the cellular plasma membrane and in multilayers composed of plasma membrane lipids. Biophys J 37:8–9 Karnovsky MJ, Kleinfeld AM, Hoover RL, Klausner RD (1982) The concept of lipid domains in membranes. J Cell Biol 94:1–6 Kessel RG (1982) Differentiation of Acmaea digitalis oocytes with special reference to lipid-endoplasmic reticulum-annulate lamellae-polyribosome relationships. J Morphol 171:225–243 Kirschner DA, Hollingshead CJ (1980) Processing for electron microscopy alters membrane structure and packing in myelin. J Ultrastruc Res 73:211–232 Krinsky NI (1958) The enzymatic esterification of vitamin A. J Biol Chem 232:881–894 Kühn H (1980) Light- and GTP-regulated interaction of GTP-ase and other proteins with bovine photoreceptor membranes. Nature 283:587–589 LaVail MM (1976) Rod outer segment disc shedding in rat retina: relationship to cyclic lighting. Science 194:1071–1073 Lion F, Rotmans JP, Daemen FJM, Bonting SL (1975) Biochemical aspects of the visual process. XXVII. Stereospecficity of ocular retinol dehydrogenases and the visual cycle. Biochim Biophys Acta 384:283–292 Lo W, Bernstein MH (1981) Daily patterns of the retinal pigment epithelium. Microperoxisomes and phagosomes. Exp Eye Res 32:1–10 Marshall J, Ansell PL (1971) Membranous inclusions in the retinal pigment epithelium: phagosomes and myeloid bodies. J Anat 110:91–104 Matthes MT, Basinger SF (1980) Myeloid body associations in the frog pigment epithelium. Invest Ophthalmol Vis Sci 19:298–302 McCown JT, Evans E, Diehl S, Wiles HC (1981) Degree of hydration and lateral diffusion in phospholipid multibilayers. Biochemistry 20:3134–3138 Medline A, Bain E, Menon AI, Haberman HF (1973) Hexachlorobenzene in rat liver. Arch Pathol 96:61–65 Meeks RG, Zaharevitz D, Chen RF (1981) Membrane effects of retinoids: possible correlation with toxicity. Arch Biochem Biophys 207:141–147 Müller AE, Cruz-Orive LM, Gehr P, Weibel ER (1981) Comparison of two subsampling methods for electron microscopic morphometry. J Microsc 123:35–50 Muraoka Y, Yahara I, Nara H, Watanabe H (1981) Steroid-induced concentric membrane whorls in the dog liver. Experientia 37:389–390 Nguyen-H-Anh J (1972) Les corps myeloïdes de l'épithelium pigmentaire retinien. II. Origine et cytochimie ultrastructurale. Z Zellf 131:187–198 Nguyen-Legros J (1975) A propose des corps myeloïdes de l'épithelium pigmentaire de la retina des vértebrés. J Ultrastruc Res 53:152–163 Nguyen-Legros J (1978) Fine structure of the pigment epithelium in the vertebrate retina. Inter Rev Cytol, Suppl 7:287–328 Nistal M, Paniaqua R, Esponda P (1980) Development of the endoplasmic reticulum during human spermatogenesis. Acta Anat 108:238–249 Novikoff AB (1976) The endoplasmic reticulum: a cytochemists view (a review). Proc Natl Acad Sci 73:2781–2787 O'Day WT, Young RW (1978) Rhythmic daily shedding of outer segment membranes by visual cells in the goldfish. J Cell Biol 76:593–604 Paiement J, Godelaine D, Beaufay H (1978) Morphological changes occurring in rough microsomes from rat liver during stimulated sugar incorporation. J Cell Biol 79:221a Porter KR (1957) The submicroscopic morphology of protoplasm. Harvey Lectures 51:175 Porter KR, Yamada E (1960) Studies on endoplasmic reticulum (ER). V. Its form and differentiation in pigment epithelial cells of frog retina. J Biophys Biochem Cytol 8:181–205 Reynolds ES (1963) The use of lead citrate at high pH as an electron-opaque stain in electron microscopy. J Cell Biol 17:208–212 Robinson WE, Hagins WA (1979) A light-activated GTP-ase in retinal rod outer segments. Photochem Photobiol 29:693 Rousseau A, Gatt S (1979) Interaction of membranous enzymes with membranous lipid substrates. Hydrolysis of diacylglycerol by lipase in rat liver microsomes. J Biol Chem 254:7741–7745 Ryan TA, Joiner BL, Ryan BF (1976) Minitab student handbook. Duxbury Press, North Scituate, Mass Saari JC, Bredberg L (1982) Enzymatic reduction of 11-cis-retinal bound to cellular retinal-binding protein. Biochim Biophys Acta 716:266–272 Saari JC, Bredberg L, Garwin GG (1982) Identification of the endogenous retinoids associated with three cellular retinoid-binding proteins from bovine retina and retinal pigment epithelium. J Biol Chem 257:13329–13367 Samarasinghe DD, Petterborg LJ, Zeagler JW, Tiang KM, Reiter RJ (1983) On the occurrence of a myeloid body in pinealocytes of the white-footed mouse, Peromyscus leucopus. An electronmicroscopic study. Cell Tissue Res 228:649–660 Scow RO, Blanchette-Mackie EJ, Smith LC (1980) Transport of lipid across capillary endothelium. Fed Proc 39:2610–2617 Setoguti T, Satou Y, Goto Y (1979) Specific lamellar structures of agranular endoplasmic reticulum in the senile mouse adrenal cortex. Arch Histol Jpn 42:95–102 Singer SJ, Nicolson GL (1972) The fluid mosaic model of the structure of cell membranes. Science 175:720–731 Steiner JW, Miyai K, Phillips MJ (1964) Electron microscopy of membrane-particle arrays in liver cells of ethionine-intoxicated rats. Am J Pathol 44:169–213 Stenger RJ (1966) Concentric lamellar formations in hepatic parenchymal cells of carbon tetrachloride-treated rats. J Ultrastruc Res 14:240–253 Tabor GA, Fisher SK (1983) Myeloid bodies in the mammalian retinal pigment epithelium. Invest Ophthalmol Vis Sci 24:388–391 Taira K (1981) Ultrastructural study on the whorls of rough endoplasmic reticulum in the pancreatic exocrine cells of the starved and re-fed newt. Biomed Res 2:194–201 Taira K, Mutoh H, Shibasaki S (1981) Freeze-fracture study on the whorls of rough endoplasmic reticulum in the exocrine pancreatic cells of the Japanese newt and African clawed toad. Cell Tissue Res 220:669–672 Thys O, Hildebrand J, Gerin Y, Jacques PJ (1973) Alterations of rat liver lysosomes and smooth endoplasmic reticulum induced by the diazofluoranthen derivative AC-3579. I. Morphologic and biochemical lesions. Lab Invest 28:70–82 Venkatesan S, Mitropoulos KA, Balasubramaniam S, Peters TJ (1980) Biochemical evidence for the heterogeneity of membranes from rat liver endoplasmic reticulum. Studies on the localization of acyl-CoA: cholesterol acyltransferase. Eur J Cell Biol 21:167–174 Weibel ER, Paumgartner D (1978) Integrated stereological and biochemical studies on hepatocyte membranes. II. Correction of section thickness effect on volume and surface density estimates. J Cell Biol 77:584–597 Wiggert B, Derr JE, Fitzpatrick M, Chader GJ (1979) Vitamin A receptors of the retina. Differential binding in light and dark. Biochim Biophys Acta 582:115–121 Wischnitzer S (1970) The annulate lamellae. Int Rev Cytol 27:65–100 Wu W, Huang C (1981) Effect of water mobility on lateral diffusion of phospholipids in liposomes. Lipids 16:820–822 Yamada E (1960) The fine structure of the pigment epithelium in the turtle eye. In: Smelser GK (ed) The structure of the eye. Academic Press, N.Y. pp 73–84 Young RW (1977) The daily rhythm of shedding and degradation of cone outer segment membranes in the lizard retina. J Ultrastruc Res 61:172–185 Young RW (1978) Visual cells, daily rhythms, and vision research. Vis Res 18:573–578 Zimmerman WF (1974) The distribution and proportions of vitamin A compounds during the visual cycle in the rat. Vis Res 14:795–802