Distributions of kinetic pathways in strain relaxation of heteroepitaxial films

Journal of Materials Research - Tập 32 - Trang 3977-3991 - 2017
Dustin Andersen1, Robert Hull1
1Department of Materials Science and Engineering, & Center for Materials, Devices and Integrated Systems, Rensselaer Polytechnic Institute, Troy, USA

Tóm tắt

The kinetic relaxation pathways for strained heteroepitaxial films are mapped using a process simulator that integrates experimental and model descriptions of the energetic and kinetic parameters that define the nucleation, propagation, and interaction of strain relieving dislocations. This paper focuses on GexSi1−x/Si(100), but the methodologies described should be extendible to other systems. The kinetic pathways for strain evolution are plotted for film growth as functions of the primary kinetic parameters: growth temperature, growth rate, and initial lattice mismatch, generating relaxation surfaces for parameter pairs. Sensitivity analyses are presented of how deviations from mean parameters disperse the resultant relaxation surfaces. Finally, multi-parameter “fingerprinting” of the dislocation array is shown to illustrate how fundamental kinetic mechanisms—particularly dislocation nucleation mechanisms—define the final dislocation array. The overarching goal is to establish a robust framework for predicting, interrogating, and optimizing strain relaxation pathways and underlying mechanisms, for misfit dislocations in strained heteroepitaxial films.

Tài liệu tham khảo

R. Hull, D. Andersen, H. Parveneh, and J.C. Bean: Materials genomics of thin film strain relaxation by misfit dislocations. J. Appl. Phys. 118, 225306 (2015). D. Andersen and R. Hull: Effect of asymmetric strain relaxation on dislocation relaxation processes in heteroepitaxial semiconductors. J. Appl. Phys. 121, 075302 (2017). J.H. Van der Merwe: Crystal interfaces. Part I. Semi-infinite crystals. J. Appl. Phys. 34, 117 (1963). J.H. Van der Merwe: Equilibrium structure of a thin epitaxial film. J. Appl. Phys. 41, 4725 (1970). J.H. Van der Merwe: Misfit dislocation generation in epitaxial layers. Crit. Rev. Solid State Mater. Sci. 17, 187 (1991). J.W. Matthews and A.E. Blakeslee: Defects in epitaxial multilayers: I. Misfit dislocations. J. Cryst. Growth 27, 118 (1974). J.W. Matthews and A.E. Blakeslee: Defects in epitaxial multilayers: II. Dislocation pile-ups, threading dislocations, slip lines and cracks. J. Cryst. Growth 29, 273 (1975). J.W. Matthews and A.E. Blakeslee: Defects in epitaxial multilayers: III. Preparation of almost perfect multilayers. J. Cryst. Growth 32, 265 (1976). B.W. Dodson and J.Y. Tsao: Relaxation of strained-layer semiconductor structures via plastic flow. Appl. Phys. Lett. 51, 1325 (1987). R.A. Coppeta, D. Holec, H. Ceric, and T. Grasser: Evaluation of dislocation energy in thin films. Philos. Mag. 95, 186 (2015). M. Re, S. Scalese, S. Mirabella, A. Terrasi, F. Priolo, E. Rimini, M. Berti, A. Coati, A. Drigo, A. Carnera, D. De Salvador, C. Spinella, and A. La Mantia: Structural characterization and stability of Si1−xGex/Si(100) heterostructures grown by molecular beam epitaxy. J. Cryst. Growth 227–228, 749 (2001). J.P. Liu, M.Y. Kong, X.F. Liu, J.P. Li, D.D. Huang, L.X. Li, and D.Z. Sun: Strain-induced morphological evolution and preferential interdiffusion in SiGe epitaxial film on Si(100) during high-temperature annealing. J. Cryst. Growth 201/202, 556 (1999). B. Hollander, S. Mantl, B. Stritzker, H. Jorke, and E. Kasper: Strain measurements and thermal stability of Si1−xGex/Si strained layers. J. Mater. Res. 4, 163 (1989). H. Alexander and P. Haasen: Dislocations and plastic flow in the diamond structure. Solid State Phys. 22, 27 (1969). M. Imai and K. Sumino: In situ X-ray topographic study of the dislocation mobility in high-purity and impurity-doped silicon crystals. Philos. Mag. A 47, 599 (1983). I. Yonenaga: Dislocation velocities and mechanical strength of bulk GeSi crystals. Phys. Status Solidi A 171, 41 (1999). W. Hagen and H. Strunk: A new type of source generating misfit dislocations. Appl. Phys. 17, 85 (1978). K. Rajan and M. Denhoff: Misfit dislocation structure at a Si/SixGe1−x strained-layer interface. J. Appl. Phys. 62, 1710 (1987). M. Rzaev, F. Schaffler, V. Vdovin, and T. Yugova: Misfit dislocation nucleation and multiplication in fully strained SiGe/Si heterostructures under thermal annealing. Mater. Sci. Semicond. Process. 8, 137 (2005). R. Hull and J.C. Bean: Variation in misfit dislocation behavior as a function of strain in the GeSi/Si system. Appl. Phys. Lett. 54, 925 (1989). L.B. Freund: A criterion for arrest of a threading dislocation in a strained epitaxial layer due to an interface misfit dislocation in its path. J. Appl. Phys. 68, 2073 (1990). E.A. Stach, K.W. Schwarz, R. Hull, F.M. Ross, and R.M. Tromp: New mechanism for dislocation blocking in strained layer epitaxial growth. Phys. Rev. Lett. 84, 947 (2000). R. Hull, J.C. Bean, D. Bahnck, L.J. Peticolas, Jr., K.T. Short, and F.C. Unterwald: Interpretation of dislocation propagation velocities in strained GexSi1−x/Si(100) heterostructures by the diffusive kink pair model. J. Appl. Phys. 70, 2052 (1991). R. Hull and J.C. Bean: New insights into the microscopic motion of dislocations in covalently bonded semiconductors by in situ transmission electron microscope observations of misfit dislocations in thin strained epitaxial layers. Phys. Status Solidi A 138, 533 (1993). C.G. Tuppen and C.J. Gibbings: The kinetics of dislocation glide in SiGe alloy layers. J. Electron. Mater. 19, 1101 (1990). D.C. Houghton: Strain relaxation kinetics in Si1−xGex/Si heterostructures. J. Appl. Phys. 70, 2136 (1991). Q. Yuan, M.S. Thesis: Misfit Strain Relaxation Mechanisms in Thin Films (University of Virginia, 1999). J.R. Willis, S.C. Jain, and R. Bullough: Work hardening and strain relaxation in strained-layer buffers. Appl. Phys. Lett. 59, 920 (1991). V.T. Gillard, W.D. Nix, and L.B. Freund: Role of dislocation blocking in limiting strain relaxation in heteroepitaxial films. J. Appl. Phys. 76, 7280 (1994). T. Kujofsa, S. Cheruku, W. Yu, B. Outlaw, S. Xhurxhi, F. Obst, D. Sidoti, B. Bertoli, P.B. Rago, E.N. Suarez, F.C. Jain, and J.E. Ayers: Relaxation dynamics and threading dislocations in ZnSe and ZnSySe1−y/GaAs(001) heterostructures. J. Electron. Mater. 42, 2764 (2013). U. Jain, S.C. Jain, J. Nijs, J.R. Willis, R. Bullough, R.P. Mertens, and R. Van Overstraeten: Calculation of critical-layer-thickness and strain relaxation in GexSi1−x strained layers with interacting 60 and 90° dislocations. Solid-State Electron. 36, 331 (1993). J. Menendez: Analytical strain relaxation model for Si1−xGex/Si epitaxial layers. J. Appl. Phys. 105, 063519 (2009). T.J. Gosling, S.C. Jain, and A.H. Harker: The kinetics of strain relaxation in lattice-mismatched semiconductor layers. Phys. Status Solidi A 146, 713 (1994). E.H. Tan and L.Z. Sun: Dislocation dynamics in semiconductor thin film-substrate systems. Mater. Res. Soc. Symp. Proc. 795, 47 (2004). K.W. Schwarz, J. Cai, and P.M. Mooney: Comparison of large-scale layer-relaxation simulations with experiment. Appl. Phys. Lett. 85, 2238 (2004). R.S. Fertig and S.P. Baker: Simulation of dislocations and strength in thin films: A review. Prog. Mater. Sci. 54, 874 (2009). K.W. Schwarz: Discrete dislocation dynamics study of strained-layer relaxation. Phys. Rev. Lett. 91, 145503 (2003). E. Kasper, H.J. Herzog, and H. Kibbel: A one-dimensional SiGe superlattice grown by UHV epitaxy. Appl. Phys. 8, 199 (1975). E.A. Stach, R. Hull, R.M. Tromp, M.C. Reuter, M. Copel, F.K. LeGoues, and J.C. Bean: Effect of the surface upon misfit dislocation velocities during the growth and annealing of SiGe(001) heterostructures. J. Appl. Phys. 83, 1931 (1998). R. Hull: Metastable strained layer configurations in the SiGe/Si system. In Properties of Silicon Germanium and SiGe: Carbon, E. Kasper and K. Lyutovich, eds. (IEE INSPEC, London, U.K., 2000); pp. 21–41. G.J. Whaley and P.I. Cohen: Relaxation of strained InGaAs during molecular beam epitaxy. Appl. Phys. Lett. 57, 144 (1990). J.A. Floro, E. Chason, and S.R. Lee: Real time measurement of epilayer strain using a simplified wafer curvature technique. Mater. Res. Soc. Symp. Proc. 405, 381 (1996). H. Yaguchi, K. Fujita, S. Fukatsu, Y. Shiraki, and R. Ito: Strain relaxation in MBE-grown Si1−xGex/Si(100) heterostructures by annealing. Jpn. J. Appl. Phys. 30, 1450 (1991). G. Bai, M-A. Nicolet, C.H. Chern, and K.L. Wang: Strain relief of metastable GeSi layers on Si(100). J. Appl. Phys. 75, 4475 (1994). H. Kuhne: On a substituting, sticking and trapping model of CVD Si1−xGx layer growth. J. Cryst. Growth 125, 291 (1992). J. Xiaojun and L. Junwu: Dependence of GexSi1−x epitaxial growth on GeH4 flow using chemical vapour deposition. J. Mater. Sci.: Mater. Electron. 8, 405 (1997). X. Yang and M. Tao: A kinetic model for Si1−xGex growth from SiH4 and GeH4 by CVD. J. Electrochem. Soc. 154, H53 (2007).