Distributionally Robust Optimization Under Moment Uncertainty with Application to Data-Driven Problems

Operations Research - Tập 58 Số 3 - Trang 595-612 - 2010
Erick Delage1, Yinyu Ye2
1Department of Management Sciences, HEC Montréal, Montreal, Quebec H3T 2A7, Canada
2Department of Management Science and Engineering, Stanford University, Stanford, California 94305

Tóm tắt

Stochastic programming can effectively describe many decision-making problems in uncertain environments. Unfortunately, such programs are often computationally demanding to solve. In addition, their solution can be misleading when there is ambiguity in the choice of a distribution for the random parameters. In this paper, we propose a model that describes uncertainty in both the distribution form (discrete, Gaussian, exponential, etc.) and moments (mean and covariance matrix). We demonstrate that for a wide range of cost functions the associated distributionally robust (or min-max) stochastic program can be solved efficiently. Furthermore, by deriving a new confidence region for the mean and the covariance matrix of a random vector, we provide probabilistic arguments for using our model in problems that rely heavily on historical data. These arguments are confirmed in a practical example of portfolio selection, where our framework leads to better-performing policies on the “true” distribution underlying the daily returns of financial assets.

Từ khóa


Tài liệu tham khảo

Anderson T. W., 1984, An Introduction to Multivariate Analysis

10.1287/moor.23.4.769

10.1137/S1052623401399903

10.1007/978-1-4615-4381-7_16

10.1145/1008731.1008733

Bertsimas D., Brown D. B., Caramanis C. Theory and applications of robust optimization. (2008) . Working paper, Massachusetts Institute of Technology, Cambridge, MA

10.1287/moor.12.1.149

10.1007/s10107-003-0499-y

10.1007/s10957-006-9084-x

Čerbáková J., 2005, Operations Research Proceedings, 817

10.1287/moor.1040.0094

10.1080/17442508708833436

Dupacová J., 2001, Encyclopedia Optim., 5, 327

Edelman A. Eigenvalues and condition numbers of random matrices. (1989) . Ph.D. thesis, Massachusetts Institute of Technology, Cambridge, MA

10.1137/0323044

10.1093/biomet/67.1.45

10.1007/BF02204857

10.1007/BF01580602

10.1287/moor.28.1.1.14260

10.1007/BF02579273

10.1007/BF02868641

Kall P., 1988, Adv. Math. Optim., 86, 10.1515/9783112479926-009

10.3182/20020721-6-ES-1901.00360

10.1090/psapm/037

10.1214/aoms/1177705673

10.1007/978-3-662-12788-9_6

10.1111/j.1467-9965.2010.00417.x

10.1137/1.9781611970791

10.1137/S003614450444614X

10.1287/opre.1060.0353

10.1007/978-94-017-3087-7

10.1515/9781400873173

10.1137/1.9781611970524

10.21314/JOR.2000.038

Scarf H., 1958, Studies in the Mathematical Theory of Inventory and Production, 201

10.1007/978-1-4757-3403-4_7

10.1007/s10107-005-0680-6

10.1137/S1052623498349541

10.1080/1055678021000034008

Shawe-Taylor J., 2003, Proc. GRETSI 2003 Conf., 47

Sturm J. F., 1999, Optim. Methods and Software, 11

10.1093/biomet/63.3.639

10.1007/BF02614507

10.1287/opre.1060.0318

10.1287/opre.1080.0684