Distribution of the Generalized Correlated Coherence in Tripartite Systems

Springer Science and Business Media LLC - Tập 59 - Trang 3635-3639 - 2020
Dong-Mei Gao1, Feng Liu1, Hai Li2, Xiao-Yan Qiao1
1College of Mathematic and Information Science, Shandong Technology and Business University, Yantai, China
2School of Information and Electronic Engineering, Shandong Technology and Business University, Yantai, China

Tóm tắt

The generalized correlated coherence is not stored locally, but does exist within the correlations between subsystems. We show that, in tripartite quantum systems, the generalized correlated coherence obeys the polygamy relation when the used coherence measure is strong subadditive. We further provide a sufficient condition, on which the generalized correlated coherence monogamy inequalities hold. These distribution results could just apply to the generalized correlated coherence, but not all quantum coherence.

Tài liệu tham khảo

Baumgratz, T., Cramer, M., Plenio, M.B.: Quantifying coherence. Phys. Rev. Lett. 113, 140401 (2014) Streltsov, A., Adesso, G., Plenio. M.B.: Colloquium: quantum coherence as a resource. Rev. Mod. Phys. 89, 041003 (2017) Liu, F., Li, F., Chen, J., Xing, W.: Quantum Inf. Process. 15, 3459 (2016) Liu, F., Gao, D.M., Cai, X.Q.: Acta Phys. Sin 68, 230301 (2019). (in Chinese) Liu, F., Li, F.: . Quantum Inf Process 15, 4203 (2016) Streltsov, A., Singh, U., Dhar, H.S., Bera, M.N., Adesso, G.: Measuring quantum coherence with entanglement. Phys. Rev. Lett. 115, 020403 (2015) Chitambar, E., Hsieh. M.-H.: Relating the resource theories of entanglement and quantum coherence. Phys. Rev. Lett. 117, 020402 (2016) Streltsov, A., Chitambar, E., Rana, S., Bera, M.N., Winter, A., Lewenstein, M.: Entanglement and coherence in quantum state merging. Phys. Rev. Lett. 116, 240405 (2016) Tan, K.C., Jeong, H.: Entanglement as the symmetric portion of correlated coherence. Phys. Rev. Lett. 121, 220401 (2018) Tan, K.C., Kwon, H., Park, C.-Y, Jeong C.-Y.: Unified view of quantum correlations and quantum coherence. Phys. Rev. A 94, 022329 (2016) Zhou, H.Y., Yuan, X., Ma, X.: Unification of quantum resources in distributed scenarios. Phys. Rev. A 99, 022326 (2019) Coffman, V., Kundu, J., Wootters, W.K.: Distributed entanglement. Phys. Rev. A 61, 052306 (2000) Koashi, M., Winter, A.: Monogamy of quantum entanglement and other correlations. Phys. Rev. A 69, 022309 (2004) Kim, J.S.: General polygamy inequality of multiparty quantum entanglement. Phys. Rev. A 85, 062302 (2012) Zhu, X.N., Fei, S.M.: Entanglement monogamy relations of qubit systems. Phys. Rev. A 90, 024304 (2014) Liu, F., Gao, D.-M., Cai, X.-Q.: Comparison of operational advantages of superposition in operational discrimination. Acta Electron. Sini. 48, 303 (2020) Nielsen, M.A., Petz, D.: A simple proof of the strong subadditivity inequality. Quantum Inf. Comput. 6, 507 (2005) Lashkari, N., Rabideau, C., Sabella-Garnier, P., Van Raamsdonk, M.: Inviolable energy conditions from entanglement inequalities. JHEP 6, 67 (2015) Acin, A., Andrianov, A., Costa, L., Jane, E., Latorre, J.I., Tarrach, R.: Generalized schmidt decomposition and classification of three-quantum-bit states. Phys. Rev. Lett. 85, 1560 (2000)