Distribution of Glutamatergic Receptors and GAD mRNA‐Containing Neurons in the Vestibular Nuclei of Normal and Hemilabyrinthectomized Rats

European Journal of Neuroscience - Tập 6 Số 4 - Trang 565-576 - 1994
Catherine de Waele1, Marc Abitbol2, Mireille Chat3, C. Ménini2, Jacques Mallet2, Pierre‐Paul Vidal3
1Laboratoire de Physiologie de la Perception et de l'Action, CNRS/Collége de France, Paris.
2Laboratoire de Génétique Moléculaire de la Neurotransmission et des Processus Dégénératifs, CNRS, Gif sur Yvette, France
3Laboratoire de Physiologie de la Perception et de ľAction, CNRS‐Collège de France, UMR C9950, 15 rue de ľécole de médicine, Paris Cedex 06, France

Tóm tắt

AbstractVestibular compensation is an attractive model for investigations of cellular mechanisms underlying post‐lesional plasticity in the adult central nervous system. Immediately after hemilabyrinthectomy, the spontaneous activity in the deafferented second‐order vestibular neurons falls to zero, resulting in a strong asymmetry between the resting discharge of the vestibular complexes on the lesioned and intact sides. This asymmetry most probably causes the static and dynamic vestibular deficits observed in the acute stage. After ∼50 h, the deafferented vestibular neurons recover a quasi‐normal resting activity which is thought to be the key of the compensation of the static vestibular syndromes. However, the molecular mechanisms underlying this recovery are unknown. In this study, we investigate possible changes in the distribution of glutamatergic N‐methyl‐d‐aspartate (NMDA) and glutamate metabotropic receptors and of glutamate decarboxylase 67k (GAD 67k) mRNAs in the deafferented vestibular neurons induced by the labyrinthine lesion. Specific radioactive oligonucleotides were used to probe sections of rat vestibular nuclei according to in situ hybridization methods. Animals were killed at different times (5 h, 3 days and 3 weeks) following the lesion. Signal was detected by means of film or emulsion autoradiography. In the normal animals, several brainstem regions including the medial, lateral, inferior and superior vestibular nuclei were densely labelled by the antisense oligonucleotide NMDAR1 probe. However, the vestibular nuclei were not labelled by the glutamate metabotropic oligonucleotide antisense probe (mGluR 1). The GAD 67k antisense oligonucleotide probe labelled numerous small‐ to medium‐sized central vestibular neurons but not the larger cell bodies in the lateral vestibular nucleus. This agrees with previous studies. In the hemilabyrinthectomized rats, no asymmetry could be detected, at either the autoradiographic or cellular levels, between the two medial vestibular nuclei whatever the probe used and whatever the delay following the lesion. However, for the NMDAR1 probe, the mean density of silver grains in both the deafferented and intact medial vestibular neurons was 20% lower 5 h after the lesion. Three days and 3 weeks later, the intensity of labelling over all cells was the same as in the control group. Further studies are necessary to confirm the relatively weak modification of the NMDAR1 mRNAs expression and to exclude a change of GAD 65 and of other NMDA subunit mRNAs during the vestibular compensation process.

Từ khóa


Tài liệu tham khảo

Benson D. L., 1991, Differential effects of monocular deprivation on glutamic acid decarboxylase and type II calcium‐calmodulin dependent protein kinase gene expression in adult monkey visual cortex, J. Neurosci., 11, 540, 10.1523/JNEUROSCI.11-06-01540.1991

10.1016/0304-3940(87)90646-X

10.1016/0012-1606(88)90156-X

10.1002/syn.890010114

10.1016/0166-2236(87)90175-5

Collingridge G. L., 1989, Excitatory amino acid receptors in the vertebrate central nervous system, Pharmacol. Rev., 40, 143

Waele C, 1988, Vestibular compensation: an in vivo and in vitro study of second‐order vestibular neurons, Soc. Neurosci. Abstr., 14, 331

10.1007/BF00230108

Waele C., 1993, Distribution of mRNAs for NMDA, metabotropic glutamate receptors and glutamic acid decarboxylase in the vestibular nuclei: an in situ hybridization study in the intact and hemilabyrinthectomized rat, Soc. Neurosci. Abstr., 137, 331

10.1007/BF00231245

10.1016/0304-3940(90)90272-B

10.1016/0896-6273(91)90077-D

Ferraguti F., 1990, Distribution of glutamic acid decarboxylase messenger RNA‐containing nerve cell populations of the male rat brain, J. Chem. Neuroanat., 3, 377

10.1016/0166-2236(93)90136-A

10.3109/00016489109131381

Gallagher J. P., 1985, Contemporary Sensory Neurobiology, 293

10.1016/0304-3940(84)90516-0

10.1016/0006-8993(83)91109-5

10.1111/j.1471-4159.1990.tb01928.x

10.1016/0006-8993(68)90057-7

10.1111/j.1471-4159.1991.tb08211.x

10.1097/00001756-199210000-00002

10.1016/0006-8993(87)90875-4

10.1016/0006-8993(87)91492-2

10.1002/syn.890030206

10.1111/j.1471-4159.1993.tb03165.x

10.1038/349760a0

10.1523/JNEUROSCI.05-11-02909.1985

10.1126/science.256.5060.1217

10.1038/354031a0

Mugnaini E., 1985, Handbook of Chemical Neuroanatomy

10.1016/0169-328X(90)90082-O

10.1007/BF00231255

10.1016/0006-8993(84)91403-3

10.1073/pnas.89.21.10331

10.1016/0006-8993(73)90631-8

Raymond J., 1988, Progress in Brain Research, 29

Roberts E., 1950, Gamma‐aminobutyric acid in brain. Its formation from glutamic acid, J. Biol. Chem., 187, 55, 10.1016/S0021-9258(19)50929-2

Roberts E., 1976, GABA in Nervous System Function

10.1126/science.3131879

Schaefer K. P., 1974, Handbook of Sensory Physiology, 463

10.1073/pnas.86.11.4302

10.1007/BF00231464

10.1007/BF02259140

10.1002/cne.903220110

10.1016/0006-8993(84)90237-3

10.1016/0165-0173(89)90013-1

10.1016/0006-8993(92)91120-4

10.1002/syn.890110205

10.1523/JNEUROSCI.09-08-02718.1989

10.1016/0896-6273(92)90118-W

10.1016/0006-8993(76)90193-1

10.1016/0006-8993(86)91121-2

10.1007/BF00229324

10.1073/pnas.83.16.6193

10.1016/0165-6147(90)90199-I