Distribution of D-amino acids in vinegars and involvement of lactic acid bacteria in the production of D-amino acids

SpringerPlus - Tập 2 - Trang 1-9 - 2013
Yuta Mutaguchi1, Taketo Ohmori1, Hirofumi Akano2, Katsumi Doi3, Toshihisa Ohshima1
1Department of Biomedical Engineering, Faculty of Engineering, Osaka Institute of Technology, Asahi-ku, Osaka, Japan
2Central Research Institute of Mizkan Group Corporation, Handa, Japan
3Microbial Genetic Division Institute of Genetic Resources Faculty of Agriculture, Kyushu University, Higashi-ku, Fukuoka, Japan

Tóm tắt

Levels of free D-amino acids were compared in 11 vinegars produced from different sources or through different manufacturing processes. To analyze the D- and L-amino acids, the enantiomers were initially converted into diastereomers using pre-column derivatization with o-phthaldialdehyde plus N-acethyl-L-cysteine or N-tert-butyloxycarbonyl-L-cysteine. This was followed by separation of the resultant fluorescent isoindol derivatives on an octadecylsilyl stationary phase using ultra-performance liquid chromatography. The analyses showed that the total D-amino acid level in lactic fermented tomato vinegar was very high. Furthermore, analysis of the amino acids in tomato juice samples collected after alcoholic, lactic and acetic fermentation during the production of lactic fermented tomato vinegar showed clearly that lactic fermentation is responsible for the D-amino acids production; marked increases in D-amino acids were seen during lactic fermentation, but not during alcoholic or acetic fermentation. This suggests lactic acid bacteria have a greater ability to produce D-amino acids than yeast or acetic acid bacteria.

Tài liệu tham khảo

Abe H, Park JN, Fukumoto Y, Fujita E, Tanaka T, Washio T, Otsuka S, Shimizu T, Watanabe K: Occurrence of D -amino acids in fish sauces and other fermented fish products. Fish Sci 1999, 65: 637-641. Aswad DW: Dtermination of D - and L -aspartate in amino acid mixture by high-performance liquid chromatography after derivatization with a chiral adduct of o -phthaldialdehyde. Anal Biochem 1984, 137: 405-409. 10.1016/0003-2697(84)90106-4 Brückner H, Hausch M: Gas chromatographic detection of D -amino acids as common constituents of fermented foods. Chromatographia 1989, 28: 487-492. 10.1007/BF02261066 Brückner H, Westhauser T: Chromatographic determination of L - and D -amino acids in plants. Amino Acids 2003, 24: 43-55. Brückner H, Becker D, Lüpke M: Chirality of amino acids of microorganisms used in food biotechnology. Chirality 1993, 5: 385-392. 10.1002/chir.530050521 D’Aniello A, Vetere A, Petrucelli L: Further study on the specificity of D -amino acid oxidase and of D -aspartate oxidase and time course for complete oxidation of D -amino acids. Comp Biochem Physiol 1993, 105B: 731-734. Erbe T, Brückner H: Chiral amino acid analysis of vinegars using gas chromatography selected ion monitoring mass spectrometry. Z Lebensm Unters Forsch A 1998, 207: 400-409. 10.1007/s002170050352 Erbe T, Brückner H: Chromatographic determination of amino acid enantiomers in beers and raw materials used for their manufacture. J Chromatogr A 2000, 881: 81-91. 10.1016/S0021-9673(00)00255-7 Gogami Y, Okada K, Oikawa T: High-performance liquid chromatography analysis of naturally occurring D-amino acids in sake. J Chromatogr B 2011, 879: 3259-3267. 10.1016/j.jchromb.2011.04.006 Hashimoto A, Nishikawa T, Oka T, Takahashi K, Hayashi T: Determination of free amino acid enantiomers in rat brain and serum by high-performance liquid chromatography after derivatization with N -tert-butyloxycarbonyl- L -cysteine and o -phthaldialdehyde. J Chromatogr 1992, 582: 41-48. 10.1016/0378-4347(92)80300-F Jin D, Miyahara T, Oe T, Toyo’oka T: Determination of D -amino acids labeled with fluorescent chiral reagents, R (−)- and S (+)-4-(3-isothiocyanatopyrrolidin-1-yl)-7-( N , N -dimetylaminosulfonyl)-2, 1, 3,-benzoxadiazoles, in biological and food samples by liquid chromatography. Anal Biochem 1999, 269: 124-132. 10.1006/abio.1998.3090 Kato S, Ishihara T, Hemmi H, Kobayashi H, Yoshimura T: Alternations in D -amino acid concentrations and microbial community structures during the fermentation of red and white wines. J Biosci Bioeng 2011, 111: 104-108. 10.1016/j.jbiosc.2010.08.019 Kawai M, Sekine-Hayakawa Y, Okiyama A, Ninomiya Y: Gustatory sensation of L - and D -amino acids in humans. Amino Acids 2012, 43: 2349-2358. 10.1007/s00726-012-1315-x Machida M, Yamada O, Gomi K: Genomics of Aspergillus oryzae : learning from the history of Koji mold and exploration of its future. DNA Res 2008, 15: 173-183. 10.1093/dnares/dsn020 Okada K, Gogami Y, Oikawa T: Principal component analysis of the relationship between the D -amino acid concentrations and the taste of the sake. Amino Acids 2013, 44: 489-498. 10.1007/s00726-012-1359-y Rubio-Barroso S, Santos-Delgadoa MJ, Martín-Olivara C, Polo-Díeza LM: Indirect chiral HPLC determination and fluorimetric detection of D -amino acids in milk and oyster samples. J Dairy Sci 2006, 89: 82-89. 10.3168/jds.S0022-0302(06)72071-9 Schiffman SS, Sennewwald K, Gagnon J: Comparison of taste qualities and thresholds of D - and L -amino acids. Physiol Behav 1981, 27: 51-59. 10.1016/0031-9384(81)90298-5 Solms J, Vuataz L, Egli RH: The taste of L - and D -amino acids. Experientia 1965, 21: 692-694. 10.1007/BF02138474 Tosa T, Sano R, Chibata I: Immobilized D -amino acid oxidase preparation, some enzymatic properties, and potential uses. Agr Biol Chem 1974, 38: 1529-1534. 10.1271/bbb1961.38.1529