Nội dung được dịch bởi AI, chỉ mang tính chất tham khảo
Phân phối, nguy cơ hư hỏng và sự cần thiết phải gia cố các đập kiểm soát trên Cao nguyên Cát vàng: một tổng quan
Tóm tắt
Các đập kiểm soát là biện pháp quan trọng nhất để kiểm soát mất đất và nước ở các lưu vực dễ bị xói mòn trên Cao nguyên Cát vàng của Trung Quốc. Dựa trên dữ liệu về các đập kiểm soát từ năm 1950 đến 2014, nghiên cứu của chúng tôi đã phân tích toàn diện sự phân bố khu vực, chức năng và các vấn đề của các đập kiểm soát trên Cao nguyên Cát vàng. Tổng số 17.094 đập kiểm soát có dung tích trên 100.000 m3 và mật độ trung bình là 0,027 cái/km2 đã được xây dựng trên Cao nguyên Cát vàng. Mật độ đập kiểm soát khác nhau rất nhiều ở các tỉnh Thiểm Tây, Cam Túc, Nội Mông, Ninh Hạ và Hà Nam. Mật độ đập kiểm soát cao nhất đạt 0,088 cái/km2 ở tỉnh Thiểm Tây, trong khi mật độ thấp nhất chỉ là 0,005 cái/km2 ở tỉnh Qinghai. Tuy nhiên, sau hàng thập kỷ hoạt động, 3025 đập kiểm soát lớn và 2257 đập kiểm soát vừa đang trong tình trạng nguy hiểm và có rủi ro an toàn, đe dọa nghiêm trọng đến an toàn hạ lưu. Tỷ lệ nguy hiểm của các đập kiểm soát rất cao. Cụ thể, các đập kiểm soát ở tỉnh Thiên Tây và Qinghai có tỷ lệ nguy hiểm cao nhất, đều vượt quá 53%. Do đó, có sự cần thiết khẩn cấp phải gia cố các đập kiểm soát đang nguy hiểm. Kết quả này hữu ích cho các nhà hoạch định chính sách trong việc mở rộng và phát triển các đập kiểm soát.
Từ khóa
#đập kiểm soát #Cao nguyên Cát vàng #phân phối #rủi ro hư hỏng #gia cốTài liệu tham khảo
Abbasi NA, Xu X, Lucasborja ME, et al. (2019) The use of check dams in watershed management projects: Examples from around the world. Sci Total Environ 676: 683–691. https://doi.org/10.1016/j.scitotenv.2019.04.249
Bombino G, Gurnell AM, Tamburino V, et al. (2008) Sediment size variation in torrents with check dams: Effects on riparian vegetation. Ecol Eng 32(2): 166–177. https://doi.org/10.1016/j.ecoleng.2007.10.011
CMWR (Chinese Ministry of Water Resources) (2003) Programming for Check-dams in the Loess Plateau. Technical Report: Beijing. pp 47–48. (In Chinese)
Fang H (2017) Impact of Land Use Change and Dam Construction on Soil Erosion and Sediment Yield in the Black Soil Region, Northeastern China. Land Degrad Dev 28(4): 1482–1492. https://doi.org/10.1002/ldr.2677
Guo W, Xu X, Wang W, et al. (2019a) Rainfall-triggered mass movements on steep loess slopes and their entrainment and distribution. Catena 183: 104238. https://doi.org/10.1016/j.catena.2019.104238
Guo W, Luo, L, Wang W, Liu Z, et al. (2019b). Sensitivity of rainstorm-triggered shallow mass movements on gully slopes to topographical factors on the Chinese Loess Plateau. Geomorphology 337: 69–78. https://doi.org/10.1016/j.geomorph.2019.04.006
Guo W, Chen Z, Wang W, et al. (2020) Telling a different story: The promote role of vegetation in the initiation of shallow landslides during rainfall on the Chinese Loess Plateau. Geomorphology 350: 106879. https://doi.org/10.1016/j.geomorph.2019.106879
Jin Z, Cui B, Song Y, et al. (2012) How many check dams do we need to build on the Loess Plateau. Environ Sci Technol 46(16): 8527–8528. https://doi.org/10.1021/es302835r
Li M (2003) Function of check dams in prevention and management of soil and water loss in the Middle Yellow River. Yellow River 25(12): 25–27. (In Chinese) https://doi.org/10.3969/j.issn.1000-1379.2003.12.013.
Li X, Wei X, Wei N (2016) Correlating check dam sedimentation and rainstorm characteristics on the Loess Plateau, China. Geomorphology 265(4): 84–97. https://doi.org/10.1016/j.geomorph.2016.04.017
Liu X, Gao Y, Ma S, Dong G (2018) Sediment reduction of warping dams and its timeliness in the Loess Plateau. J Hydraul Eng 49(2): 145–155. (In Chinese) https://doi.org/10.13243/j.cnki.slxb.20170925
Lucas-Borja ME, Zema DA, Guzman MDH, et al. (2018) Exploring the influence of vegetation cover, sediment storage capacity and channel dimensions on stone check dam conditions and effectiveness in a large regulated river in México. Ecol Eng 122: 39–47. https://doi.org/10.1016/j.ecoleng.2018.07.025
MWRPRC (Ministry of Water Resources of the People’s Republic of China) (2015) Notice of the General Office of the MWRPRC on the preliminary design work for the identification and reinforcement of medium and large dangerous check-dams. http://www.mwr.gov.cn/zwgk/index.html
Nyssen J, Veyretpicot M, Poesen J, et al. (2004) The effectiveness of loose rock check dams for gully control in Tigray, northern Ethiopia. Soil Use Manage 20(1): 55–64. https://doi.org/10.1079/SUM2003223
Piton G, Recking A (2017) Effects of check dams on bed-load transport and steep-slope stream morphodynamics. Geomorphology 291: 94–105. https://doi.org/10.1016/j.geomorph.2016.03.001
Polyakov VO, Nichols MH, Mcclaran MP, et al. (2014) Effect of check dams on runoff, sediment yield, and retention on small semiarid watersheds. J Soil Water Conserv 69(5): 414–421. https://doi.org/10.2489/jswc.69.5.414.
Romero-Díaz A, Marín-Sanleandro P, Ortiz-Silla R (2012) Loss of soil fertility estimated from sediment trapped in check dams. South-eastern Spain. Catena 99: 42–53. https://doi.org/10.1016/j.catena.2012.07.006
Suriyawong P, Thapanya D, Bergey EA, et al. (2018) Aquatic insect functional feeding groups in a mountain stream with a series of check dams in Northern Thailand. Sains Malays 47(07): 1379–1386. https://doi.org/10.17576/jsm-2018-4707-04
Wang Y, Fu B, Chen L, et al. (2011) Check dam in the Loess Plateau of China: engineering for environmental services and food security. Environ Sci Technol 45(24): 10298–10299. https://doi.org/10.1021/es2038992
Wang Y, Chen L, Fu B, et al. (2014a) Check dam sediments: an important indicator of the effects of environmental changes on soil erosion in the Loess Plateau in China. Environ. Monit Assess 186(7): 4275–4287. https://doi.org/10.1007/s10661-014-3697-6
Wang Y, Chen L, Gao Y, et al. (2014b) Carbon Sequestration Function of Check-Dams: A Case Study of the Loess Plateau in China. Ambio 43(7): 926–931. https://doi.org/10.1007/s13280-014-0518-7
Wang S, Fu B, Piao S, et al. (2015) Reduced sediment transport in the Yellow River due to anthropogenic changes. Nat Geosci 9(1): 38–41. https://doi.org/10.1038/ngeo2602
Wang HW, Kuo WC (2016) Geomorphic responses to a large check - dam removal on a mountain river in Taiwan. River Res Appl 32(5): 1094–1105. https://doi.org/10.1002/rra.2929
Wei Y, Wang Z, He Z, et al. (2015). Investigation and evaluation on check dams damaged condition under continuous rainstorm in Yanhe river basin in July 2013. Bull Soil and Water Conserv 35(3): 250–255. (In Chinese) https://doi.org/10.13961/j.cnki.stbctb.2015.03.052
Wei X, Li X, Wei N (2016) Fractal features of soil particle size distribution in layered sediments behind two check dams: Implications for the Loess Plateau, China. Geomorphology 266: 133–145. https://doi.org/10.1016/j.geomorph.2016.05.003
Wei Y, He Z, Li Y, et al. (2017) Sediment Yield Deduction from Check-dams Deposition in the Weathered Sandstone Watershed on the North Loess Plateau, China. Land Degrad Dev 28(1): 217–231. https://doi.org/10.1002/ldr.2628
Xu X, Zhang H, Zhang O (2004) Development of check-dam systems in gullies on the Loess Plateau, China. Environ Sci Policy 7(2): 79–86. https://doi.org/10.1016/j.envsci.2003.12.002
Xu XZ, Zhang H, Wang G, et al. (2006) A laboratory study on the relative stability of the check - dam system in the Loess Plateau, China. Land Degrad Dev 17(6): 629–644. https://doi.org/10.1002/ldr.740
Xu YD, Fu B, He C, et al. (2013) Assessing the hydrological effect of the check dams in the Loess Plateau, China, by model simulations. Hydrol Earth Syst Sci 17(6): 2185–2193. https://doi.org/10.5194/hess-17-2185-2013
Yang X, Sun W, Li P, et al. (2018) Reduced sediment transport in the Chinese Loess Plateau due to climate change and human activities. Sci Total Environ 642: 591–600. https://doi.org/10.1016/j.scitotenv.2018.06.061
Yuan S, Li Z, Li P, et al. (2018) MIKE coupling model simulating effect of check dam construction on storm flood process in small watershed. Trans Chin Soc Agr Eng 34(13): 152–159. (In Chinese) https://doi.org/10.11975/j.issn.1002-6819.2018.13.018
Zema DA, Bombino G, Denisi P, et al. (2018) Evaluating the effects of check dams on channel geometry, bed sediment size and riparian vegetation in Mediterranean mountain torrents. Sci Total Environ 642: 327–340. https://doi.org/10.1016/j.scitotenv.2018.06.035
Zhang X, Shao M, Li S, Peng K (2004) A review of soil and water conservation in china. J Geogr Sci 14(3): 259–274. https://doi.org/10.1007/bf02837406
Zhao G, Kondolf GM, Mu X, et al. (2017a). Sediment yield reduction associated with land use changes and check dams in a catchment of the Loess Plateau, China. Catena 148: 126–137. https://doi.org/10.1016/j.catena.2016.05.010
Zhao T, Yang M, Walling D E, et al. (2017b) Using check dam deposits to investigate recent changes in sediment yield in the Loess Plateau, China. Glob. Planet. Change 152: 88–98. https://doi.org/10.1016/j.gloplacha.2017.03.003