Phân bố và đánh giá rủi ro của ô nhiễm kim loại và arsen trong trầm tích rãnh nhân tạo với các loại hình sử dụng đất khác nhau

Springer Science and Business Media LLC - Tập 23 - Trang 24808-24823 - 2016
Mathieu Nsenga Kumwimba1,2,3,4, Bo Zhu1,2,3, Tao Wang1,2, Diana Kavidia Muyembe5
1Key Laboratory of Mountain Surface Processes and Ecological Regulation, Chinese Academy of Sciences, Chengdu, China
2Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, Chengdu, China
3University of Chinese Academy of Sciences, Beijing, China
4Faculty of Agronomy, Department of Natural Resources and Environmental Management, University of Lubumbashi, Lubumbashi, Democratic Republic of Congo
5School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, People’s Republic of China

Tóm tắt

Các rãnh tiếp xúc với một lượng lớn chất dinh dưỡng, kim loại vi lượng và arsen, cùng với sự gia tăng lấp đầy do hoạt động của con người. Tuy nhiên, ảnh hưởng của các loại hình sử dụng đất khác nhau đến sự phân bổ và rủi ro môi trường liên quan của kim loại và arsen trong lưu vực Tứ Xuyên đỏ vẫn còn chưa rõ ràng, điều này là cần thiết cho việc quản lý nguồn nước. Nghiên cứu này được thực hiện nhằm xác định trạng thái của kim loại/kim loại bán dẫn trong trầm tích rãnh từ các loại hình sử dụng đất khác nhau. Tổng cộng 68 mẫu trầm tích bề mặt (0–5 cm) đã được thu thập từ các rãnh mở phân bố trong các loại hình sử dụng đất khác nhau, cụ thể là: các rãnh canh tác (CD), rãnh đất hoang (BLD), rãnh ven đường (RSD) và rãnh khu dân cư (RD), trong lưu vực Tứ Xuyên. Nồng độ trung bình của Cr, Ni, Cu, Zn, Cd, Pb và Mn ở cả RD và RSD đều vượt mức nền đất của lưu vực Tứ Xuyên, nhưng Cd trong trầm tích rãnh của lưu vực đã gây ra rủi ro sinh thái đáng kể cho môi trường. Tổng thể, các kim loại/kim loại bán dẫn (ngoại trừ Pb) giảm theo thứ tự sau RD > RSD > BLD > CD. Trong các loại hình sử dụng đất khác nhau ở khu vực đồi núi, việc sử dụng đất khu dân cư và ven đường có khả năng gây ảnh hưởng bất lợi đến sự sống dưới nước. Phân tích thống kê đa biến cho thấy rằng Mn, As, Cu, Ni, Zn, Fe và Al chủ yếu bị ảnh hưởng bởi sự phong hóa tự nhiên (xói mòn), trong khi Pb có thể đến từ giao thông vận tải nặng. Mức độ ô nhiễm (Md), hệ số làm giàu (EF) và chỉ số tích lũy địa chất (Igeo) cho thấy Cd gây ô nhiễm trầm tích nghiêm trọng trong lưu vực. Các giá trị hướng dẫn chất lượng trầm tích SQG-Q cho thấy kim loại và arsen tạo ra nguy cơ tác động sinh học tiềm ẩn từ trung bình đến thấp. Những kết quả này cung cấp thông tin cơ bản về ô nhiễm kim loại và arsen trong lưu vực Tứ Xuyên. Nhận thức về sự đóng góp của các loại hình sử dụng đất đến kim loại và arsen yêu cầu những rãnh nhân tạo này cần được xem xét để giảm thiểu ô nhiễm trong khu vực này.

Từ khóa

#ô nhiễm kim loại #arsen #trầm tích rãnh #quản lý nước #lưu vực Tứ Xuyên

Tài liệu tham khảo

Addo MA, Affum H, Botwe BO, Gbadago JK, Acquah SA, Senu JK, Adom T, Coleman A (2012) Assessment of water quality and heavy metal levels in water and bottom sediment samples from Mokwe Lagoon, Accra, Ghana, Res. J Environ Earth Sc 4:119–130 Almasoud FI, Usman AR, Al-Farraj AS (2015) Heavy metals in the soils of the Arabian gulf coast affected by industrial activities: analysis and assessment using enrichment factor and multivariate analysis. Arab J Geosci 8:1691 Arivoli A, Mohanraj R, Seenivasan R (2015) Application of vertical flow constructed wetland in treatment of heavy metals from pulp and paper industry wastewater. Environ Sci Pollut Res 22:13336–13343 Bai JH, Xiao R, Cui BS, Zhang KJ, Wang QG, Liu XH, Gao HF, Huang LB (2011) Assessment of heavy metal pollution in wetland soils from the young and old reclaimed regions in the Pearl River Estuary, South China. Environ Pollut 159:817–824 Bao S (2000) Analytical notebook of agricultural chemistry in soil, 3rd edn. Agricultural Publishing House, Beijing in Chinese Bennett ER, Moore MT, Cooper CM, Smith S Jr, Shields FD Jr, Drouillard KG, Schulz R (2005) Vegetated agricultural drainage ditches for the mitigation of pyrethroid-associated runoff. Environ Toxicol Chem 24:2121–2127 Bo L, Wang D, Li T, Li Y, Zhang G, Wang C, Zhang S (2015) Accumulation and risk assessment of heavy metals in water, sediments, and aquatic organisms in rural rivers in the Taihu Lake region, China. Environ Sci Pollut Res 22:6721–6731 Bortone G, Arevalo E, Deibel I, Detzner HD, de Propris L, Elskens F, Giordano A, Van Veen J (2004) Synthesis of the SedNet work package 4 outcomes. J Soils Sediments 4:225–232 Bouldin JL, Farris JL, Moore MT, Cooper CM (2004) Vegetative and structural characteristics of agricultural drainages in the Mississippi Delta landscapes. Environ Pollut 132:403–411 Buchanan BP, Falbo SRL, Easton ZM, Walter MT (2012) Hydrological impact of roadside ditches in an agricultural watershed in Central New York: implications for non-point source pollutant transport. Hydrol Process. doi:10.1002/hyp.9305 Cai LM, Huang LC, Zhou YZ, Xu ZC, Peng XC, Yao LA, Zhou Y, Peng PA (2010) Heavy metal concentrations of agricultural soils and vegetables from Dongguan, Guangdong. J Geogr Sci 20:121–134 CEMS: Chinese environmental monitoring station (1990) Background values of elements in soils of China (in Chinese). China Environmental Press, Beijing, p. 501 Chapman D (1992) Chapman, water quality assessment: a guide of the use of biota, sediments and water in environmental monitoring. University Press, Cambridge, p. 585 Cheng S (2003) Heavy metal pollution in China: origin, pattern and control. Environ Sci Pollut Res 10:192–198 Chinese Soil Science Society (2000) Analytical methods for soil agricultural chemistry. China agricultural science and technology press, Beijing in Chinese CNEMC, 1990. (China National Environmental Monitoring Center). The soil background value in China [R]. China Environmental Science Press, Beijing (in Chinese). De Laney TA (1995) Benefits to downstream flood attenuation and water quality as a result of constructed wetlands in agricultural landscapes. J Soil Water Conserv 50:620–626 Du J, Luo Y, Zhang W, Xu C, Wei C (2013) Major element geochemistry of purple soils/rocks in the red Sichuan Basin, China: implications of their diagenesis and pedogenesis. Environ Earth Sci 69:1831–1844 ECGSD (1999) In: Environment, C.C.o.M.o.t. (Ed.). Canadian water quality guidelines for the protection of aquatic life—arsenic 4 pp Facchinelli A, Sacchi E, Mallen L (2001) Multivariate statistical and GIS-based approach to identify heavy metal sources in soils. Environ Pollut 114:313–324 Fathollahzadeh H, Fabio K, Amit B, William H (2015) Significance of environmental dredging on metal mobility from contaminated sediments in the Oskarshamn Harbor, Sweden. Chemosphere 119:445–451 Foley JA, DeFries R, Asner GP, Barford C, Bonan G, Carpenter SR (2005) Global consequences of land use. Science 309:570–574 Franco-Urıa A, Lo´ pez-Mateo C, Roca E, Fernandez-Marcos ML (2009) Source identification of heavy metals in pastureland by multivariate analysis in NW Spain. J Hazard Mater 165:1008–1015 Gao Y, Zhu B, Zhou P, Tang JL, Wang T (2009) Effects of vegetation cover on phosphorus loss from a hillslope cropland of purple soil under simulated rainfall: a case study in China. Nutr Cycl Agro ecosys 85:263–273 Gaur VK, Gupta SK, Pandey SD, Gopal K, Misra V (2005) Distribution of heavy metals in sediment and water of river Gomti. Environ Monit Assess 102:419–433 Gong ZT (1999) Chinese soil taxonomy. Science Press, pp:756–760 in Chinese Guhathakurta H, Kaviraj A (2004) Effects of salinity and mangrove detritus on desorption of metals from brackish water desorption of metals from brackish water and shrimp. Acta Hydrochim Hydrobiol 32:411–418 Hakanson L (1980) Ecological risk index for aquatic pollution control, a sedimentological approach. Water Res 14:975–1001 He YR (2003) Purple soils in China, vol 14. Chinese Science Press, Beijing, pp. 80–81 in Chinese Hernandez L, Probst A, Probst JL, Ulrich E (2003) Heavy metal distribution in some French forest soils: evidence for atmosphere contamination. Sci Total Environ 312:195–210 Houqi L, Guijian L, Chunnian D, Zijiao Y, Wang J (2015) Concentration and fractionation of heavy metals in the Old Yellow River estuary, China. J Environ Qual 44:174–182 Janse JH, Peter JTM, Puijenbroek V (1998) Effects of eutrophication in drainage ditches. Environ Pollut 102:547–552 Jeanne D, Cécile D, Jean-Stéphane B, Philippe L, Marc V (2015) Managing ditches for agroecological engineering of landscape. A review. Agron Sustain Dev 35:999–1020 Karadede-Akin H, Ünlü E (2007) Heavy metal concentrations in water, sediment, fish and some benthic organisms from Tigris River, Turkey. Environ Monit Assess 131:323–337 Kröger R, Moore MT, Locke MA, Cullum RF, Steinriede RW Jr, Testa S III, Bryant CT, Cooper CM (2009) Evaluating the influence of wet- land vegetation on chemical residence time in Mississippi Delta drainage ditches. Agric Water Manag 96:1175–1179 Kumwimba MN, Zhu B, Wang T, Yuan Z, Muyembe DK (2016) Metal Distribution and Contamination Assessment in Drainage Ditch Water in the Main Rice/Vegetable Area of Sichuan Hilly Basin. Bull Environ Contam Toxicol 96:248--253 Lacerda LD, de Souza M, Ribeiro MG (2004) The effects of land use change on mercury distribution in soils of Alta Floresta, southern Amazon. Environ Pollut 129:247–255 Lecce SA, Pease PP, Gares PA, Wang J (2006) Seasonal controls on sediment delivery in a small coastal plain watershed, North Carolina, USA. Geomorphology 73:246–260 Li Q, Wu Z, Chu B, Zhang N, Cai S, Fang J (2007) Heavy metals in coastal wetland sediments of the Pearl River Estuary, China. Environ Pollut 149:158–164 Li ZM (ed) (1991) Purple soils in China (I). Science Press, Beijing, pp. 23–85 in Chinese Licursi M, Gomez N (2009) Effects of dredging on benthic diatom assemblages in a lowland stream. J Environ Manag 90:973–982 Liu GS (1996) Soil physical and chemical analysis and description of soil profiles. China Standard Press, Beijing, pp. 230–256 in Chinese Long ER, MacDonald DD (1998) Recommended uses of empirically derived, sediment quality guidelines for marine and estuarine ecosystems. Hum Ecol Risk Assess 4:1019–1039 Long H, Zou J, Liu Y (2009) Differentiation of rural development driven by industrialization and urbanization in eastern coastal China. Habitat Int 33:454–462 MacDonald DD, Carr S, Clader FD, Long ED, Ingersoll CG (1996) Development and evaluation of sediment quality guidelines for Florida coastal waters. Ecotoxicology 5:253–278 MacDonald DD, Ingersoll CG, Berger TA (2000) Development and evaluation of consensus-based sediment quality guidelines for freshwater ecosystems. Arch Environ Contam Toxicol 39:20–31 Mamat Z, Haximu S, Zhang ZY, Aji R (2016) An ecological risk assessment of heavy metal contamination in the surface sediments of Bosten Lake, Northwest China. Environ Sci Pollut Res 23:7255–7265 Martinuzzi S, Januchowski-Hartley SR, Pracheil BM, McIntyre PB, Plantinga AJ, Lewis DJ (2014) Threats and opportunities for freshwater conservation under future land use change scenarios in the United States. Glob Chang Biol 20:113–124 Matos AT, Fontes MPF, Da C, Martinez MA (2001) Mobility of heavy metals as related to soil chemical and mineralogical characteristics of Brazilian soils. Environ Pollut 111:429–435 Mico C, Recatala L, Peris M, Sanchez J (2006) Assessing heavy metal sources in agricultural soils of an European Mediterranean area by multivariate analysis. Chemosphere 65:863–872 Millennium Ecosystem Assessment (2005) Ecosystems and human well-being. Island Press, Washington DC Müller G (1985) Die Schwermetallbelastung der sedimente des Neckars und seiner NebenFlusse: eine Bestandsaufnahme. Chemical Zeitung 105:157–164 National Environmental Bureau (NEB) (1998) Water and waste analysis, 3rd edn. Chinese Environmental Science Publish House, Beijing, China Needelman BA, Kleinman PJA, Strock JS, Allen AL (2007) Improved management of agricultural drainage ditches for water quality protection: an overview. J Soil Water Conserv 62:171–178 Ongley EDZXL, Tao Y (2010) Current status of agricultural and rural non-point source pollution assessment in China. Environ Pollut 158:1159–1168 Palermo MR, Schroeder PR, Estes TJ, Francingues NR (2008) Technical guidelines for environmental dredging of contaminated sediments. Environmental Laboratory U.S. Army Engineer Research and Development Center, Vicksburg, MS. p. 304. Pérez G, López-Mesas M, Valiente M (2008) Assessment of heavy metals remobilization by fractionation: comparison of leaching tests applied to roadside sediments. Environ Sci Technol 42:2309–2315 Prat N, Toja J, Solà C, Burgos MD, Plans M, Rieradevall M (1999) Effect of dumping and cleaning activities on the aquatic ecosystems of the Guadiamar River following a toxic flood. Sci Total Environ 242:231–248 Rodríguez Martín JA, Vázquez de la Cueva A, Grau Corbí JM, López Arias M (2007) Factors controlling the spatial variability of copper in topsoils of the northeastern region of the Iberian Peninsula, Spain. Water Air Soil Pollut 186:311–321 Sabin LD, Hee LJ, Teresa VM, Winer AM, Schiff KC, Stolzenbach KD (2006) Dry deposition and resuspension of particle-associated metals near a freeway in Los Angeles. Atmos Environ 40:7528–7538 Salomons W, Forstner U (1984) Metals in the hydrocycle. Springer, Berlin, p. 349 Seshan BRR, Natesan U, Deepthi K (2010) Geochemical and statistical approach for evaluation of heavy metal pollution in core sediments in southeast coast of India. Int J Environ Sci Tech 7:291–306 Sharpley AN, Krogstad T, Kleinman PJA, Haggard F, Shigaki LS, Saporito (2007) Managing natural processes in drainage ditches for nonpoint- source phosphorus control. J Soil Water Cons 62:197–206 Shore M, Jordan P, Mellander PE, Kelly-Quinn M, Melland AR (2015) An agricultural drainage channel classification system for phosphorus management. Agric Ecosyst Environ 199:207–215 Smith DR, Pappas EA (2007) Effect of ditch dredging on the fate of nutrients in deep drainage ditches of the Midwestern United States. J Soil Water Conserv 62:252–261 Streiner DL (1994) Figuring out factors: the use and misuse of factor analysis. Can J Psychiatr 39:135--140 Suresh G, Sutharsan P, Ramasamy V, Venkatachalapathy R (2011) Assessment of spatial distribution and potential ecological risk of the heavy metals in relation to granulometric contents of Veeranam lake sediments, India. Ecotoxicol Environ Saf 84:117–124 Tomlinson DL, Wilson JG, Harris CR, Jeffrey DW (1980) Problems in the assessment of heavy metal levels in estuaries and the formation of a pollution index. Helgoländer Meeresun 33:566–575 Tucker GE, Bras RL (1998) Hillslope processes, drainage density, and landscape morphology. Water Resour Res 34:2751–2764 Turekian KK, Wedepohl KH (1961) Distribution of the elements in some major units of the earth’s crust. Geol. Soc Am Bull 72:175–192 Turer D, Maynard JB, Sansalone JJ (2001) Heavy metal contamination in soils of urban highways: comparison between runoff and soil concentrations at Cincinnati, Ohio. Water Air Soil Pollut 132:293–314 US EPA (2001) Methods for collection, storage and manipulation of sediments for chemical and toxicological analyses: technical manual. EPA-823-B-01-002, Office of Water, Washington, DC Wang M, Webber M, Finlayson B, Barnett J (2008) Rural industries and water pollution in China. J Environ Manag 86:648–659 Wasserman JC, Barros SR, Lima GBA (2013) Planning dredging services in contaminated sediments for balanced environmental and investment costs. Environ Manag 121:48–56 Wedepohl KH (1995) The composition of the continental crust. Geochim Cosmochim Acta 59:1217–1232 Wilhelmsson A (2012) Fly ash—a potential binder component for stabilization and solidification of dredged material. In: Proceeding of 8th Eco-Tech Conference. Kalmar, Sweden, November 26–28. Wong CSC (2002) A study of trace metal contamination of urban soils in Hong Kong and agricultural soils in the Pearl River Delta. Unpublished MPhil dissertation, Department of Civil and Structural Engineering, The Hong Kong Polytechnic University, Hong Kong. Yang Y, Chen F, Zhang L, Liu J, Wu S, Kang M (2012) Comprehensive assessment of heavy metal contamination in sediment of the Pearl River Estuary and adjacent shelf. Mar Pollut Bull 64:1947–1955 Yang ZF, Cheng HX, Xi XH (2005) Regional ecological geochemical assessment: ideas and prospects. Geol. Bull China 24:687–693 in Chinese Zhang J, Liu CL (2002) Riverine composition and estuarine geochemistry of particulate metals in China-weathering features, anthropogenic impact and chemical fluxes. Estuar. Coastal Shelf Sci 54:1051–1070 Zheng SA, Zheng XQ, Chen C (2013) Transformation of metal speciation in purple soil as affected by waterlogging. Int J Environ Sci Technol 10:351–358 Zhou M, Zhu B, Butterbach-Bah K, Wang T, Jessica B, Nicolas B, Wang Z, Li T, Kuang F (2012) Nitrate leaching, direct and indirect nitrous oxide fluxes from sloping cropland in the purple soil area, southwestern China. Environ Pollut 162:361–368 Zhu B, Wang T, Kuang FH, Luo ZX, Tang JL, Xu TP (2009) Measurements of nitrate leaching from a hillslope cropland in the Central Sichuan Basin, China. Soil Sci Soc Am J 73:1419–1426 Zhu B, Wang T, You X, Gao MR (2008) Nutrient release from weathering of purplish rocks in the Sichuan Basin, China. Pedosphere 18:257–264