Distributing many points on a sphere

The Mathematical Intelligencer - Tập 19 Số 1 - Trang 5-11 - 1997
Edward B. Saff1, Arno B. J. Kuijlaars2
1Institute for Constructive Mathematics, Department of Mathematics, University of South Florida, Tampa, USA
2Departement Wiskunde, Katholieke UniverS’teit Leuven, Leuven, Belgium

Tóm tắt

Từ khóa


Tài liệu tham khảo

R. Alexander, On the sum of distances betweenN points on a sphere,Ada Math. Acad, Sci. Hungar. 23 (1972), 443–448.

E. L. Altschuler, T. J. Williams, E. R. Ratner, F. Dowla, and F. Wooten, Method of constrained global optimization,Phys. Rev. Lett. 72 (1994), 2671–2674.

J. Beck, Sums of distances between points on a sphere—an application of the theory of irregularities of distribution to discrete geometry,Mathematika 31 (1984), 33–41.

B. Bergersen, D. Boal, and P. Palffy-Muhoray, Equilibrium configurations of particles on a sphere: the case of logarithmic interactions,J. Phys. A: Math. Gen. 27 (1994), 2579–2586.

F. R. K. Chung, B. Kostant, and S. Sternberg, Groups and the buckyball, inLie Theory and Geometry (J.-L. Brylinski, R. Brylinski, V. Guillemin and V. Kac, eds.),Progress in Mathematics No. 123, Boston: Birkhäuser (1994), pp. 97–126.

J. H. Conway and N. J. A. Sloane,Sphere Packings, Lattices and Groups, 2nd ed., New York: Springer-Verlag (1993).

J. Cui and W. Freeden, Equidistribution on the sphere,SIAM J. Sci. Comp. (to appear).

B. E. J. Dahlberg, On the distribution of Fekete points,Duke Math. J. 45 (1978), 537–542.

P. Delsarte, J. M. Goethals, and J.J. Seidel, Spherical codes and designs,Geom. Dedicata 6 (1977), 363–388.

T. Erber and G. M. Hockney, Equilibrium configurations ofN equal charges on a sphere,J. Phys. A: Math. Gen. 24 (1991), L1369-L1377.

T. Erber and G. M. Hockney, Comment on “Method of constrained global optimization,”Phys. Rev. Lett. 74 (1995), 1482.

L. Glasser and A. G. Every, Energies and spacings of point charges on a sphere,J. Phys. A: Math. Gen. 25 (1992), 2473–2482.

W. Habicht and B. L. van der Waerden, Lagerung von Punkten auf der Kugel,Math. Ann. 123 (1951), 223–234.

R. H. Hardin and N. J. A. Sloane, McLaren’s improved snub cube and other new spherical designs in three dimensions,Discr. Comp. Geom. 15 (1996), 429–442.

J. Korevaar, Chebyshev-type quadratures: use of complex analysis and potential theory, in:Complex Potential Theory (P. M. Gauthier and G. Sabidussi, eds.), Dordrecht: Kluwer (1994), 325–364.

J. Korevaar and J. L. H. Meyers, Spherical Faraday cage for the case of equal point charges and Chebyshev-type quadrature on the sphere,Integral Transforms and Special Functions 1 (1993), 105–117.

A. B. J. Kuijlaars, and E. B. Saff, Asymptotics for minimal discrete energy on the sphere,Trans. Am. Math. Soc. (to appear).

A. Lubotzky, R. Phillips, and P. Sarnak, Hecke operators and distributing points on the sphere I,Comm. Pure Appl. Math. 39 (1986), 149–186.

T. W. Melnyk, O. Knop, and W. R. Smith, Extremal arrangements of points and unit charges on a sphere: equilibrium configurations revisited.Can. J. Chem. 55 (1977), 1745–1761.

E. A. Rakhmanov, E. B. Saff, and Y. M. Zhou, Minimal discrete energy on the sphere,Math. Res. Lett. 1 (1994), 647–662.

E. A. Rakhmanov, E. B. Saff, and Y. M. Zhou, Electrons on the sphere, inComputational Methods and Function Theory (R. M. Ali, St. Ruscheweyh, and E. B. Saff, eds.), Singapore: World Scientific (1995), pp. 111–127.

M. Shub and S. Smale, Complexity of Bezout’s theorem III: condition number and packing,J. Complexity 9 (1993), 4–14.

K. B. Stolarsky, Sums of distances between points on a sphere. II.Proc. Am. Math. Soc. 41 (1973), 575–582.

G. Wagner, On the means of distances on the surface of a sphere (lower bounds),Pacific J. Math. 144 (1990), 389–398.

G. Wagner, On the means of distances on the surface of a sphere II (upper bounds),Pacific J. Math. 153 (1992), 381–396.

Y. M. Zhou, Arrangements of points on the sphere, Thesis, University of South Florida, 1995.