Distributed visual positioning for surgical instrument tracking

Physical and Engineering Sciences in Medicine - Tập 47 Số 1 - Trang 273-286 - 2024
Changyong Yu1, Mingzhu Zhu1, Bingwei He1, Jianwei Zhang2
1School of Mechanical Engineering, Fuzhou University, Fuzhou 350108, China
2Department of Informatics, University of Hamburg, 22527, Hamburg, Germany

Tóm tắt

Từ khóa


Tài liệu tham khảo

Mezger U, Jendrewski C, Bartels M (2013) Navigation in surgery. Langenbecks Arch Surg 398:501–514

Jung RE, Schneider D, Ganeles J, Wismeijer D, Zwahlen M, Haemmerle CHF, Tahmaseb A (2009) Computer technology applications in surgical implant dentistry: a systematic review. Int J Oral Maxillofac Implants 24:92–109

Zhou Z, Yang Z, Jiang S, Zhuo J, Zhu T, Ma S (2022) Augmented reality surgical navigation system based on the spatial drift compensation method for glioma resection surgery. Med Phys 49(6):3963–3979. https://doi.org/10.1002/mp.15650

Hassfeld S, Muhling J (2000) Comparative examination of the accuracy of a mechanical and an optical system in CT and MRT based instrument navigation. Int J Oral Maxillofac Surg 29(6):400–407. https://doi.org/10.1016/s0901-5027(00)80069-7

Ungi T, Abolmaesumi P, Jalal R, Welch M, Ayukawa I, Nagpal S, Lasso A, Jaeger M, Borschneck DP, Fichtinger G, Mousavi P (2012) Spinal needle navigation by tracked ultrasound snapshots. IEEE Trans Biomed Eng 59(10):2766–2772. https://doi.org/10.1109/tbme.2012.2209881

Gao C, Phalen H, Sefati S, Ma J, Taylor R, Unberath M, Armand M (2022) Fluoroscopic navigation for a surgical robotic system including a continuum manipulator. IEEE Trans Biomed Eng 69(1):453–464. https://doi.org/10.1109/tbme.2021.3097631

Engelhardt S, Wolf I, Al-Maisary S, Schmidt H, Meinzer HP, Karck M, De Simone R (2016) Intraoperative quantitative mitral valve analysis using optical tracking technology. Ann Thorac Surg 101(5):1950–1957. https://doi.org/10.1016/j.athoracsur.2016.01.018

Zhou Z, Yang Z, Jiang S, Zhang F, Yan H (2019) Design and validation of a surgical navigation system for brachytherapy based on mixed reality. Med Phys 46(8):3709–3718. https://doi.org/10.1002/mp.13645

Ren H, Liu W, Lim A (2014) Marker-based surgical instrument tracking using dual kinect sensors. IEEE Trans Autom Sci Eng 11(3):921–924. https://doi.org/10.1109/tase.2013.2283775

Mallon J, Whelan PF (2007) Which pattern? biasing aspects of planar calibration patterns and detection methods. Pattern Recogn Lett 28(8):921–930. https://doi.org/10.1016/j.patrec.2006.12.008

Stefanelli LV, Mandelaris GA, DeGroot BS, Gambarini G, De Angelis F, Di Carlo S (2020) Accuracy of a novel trace-registration method for dynamic navigation surgery. Int J Periodontics Restor Dentist 40(3):427. https://doi.org/10.11607/prd.4420

He C, Kazanzides P, Sen HT, Kim S, Liu Y (2015) An inertial and optical sensor fusion approach for six degree-of-freedom pose estimation. Sensors 15(7):16448–16465. https://doi.org/10.3390/s150716448

Fan Z, Chen G, Wang J, Liao H (2018) Spatial position measurement system for surgical navigation using 3-d image marker-based tracking tools with compact volume. IEEE Trans Biomed Eng 65(2):378–389. https://doi.org/10.1109/tbme.2017.2771356

Benjumea E, Sierra JS, Meza J, Marrugo AG (2021) Multi-target attachment for surgical instrument tracking. In: 13th Mexican conference on pattern recognition (MCPR), pp 345–354. https://doi.org/10.1007/978-3-030-77004-4_33

Celozzi C, Paravati G, Sanna A, Lamberti F, Ieee (2010) A 6-dof artag-based tracking system. In: IEEE international conference on consumer electronics

Wang J, Song S, Ren H, Lim CM, Meng MQH (2019) Surgical instrument tracking by multiple monocular modules and a sensor fusion approach. IEEE Trans Autom Sci Eng 16(2):629–639. https://doi.org/10.1109/tase.2018.2848239

Li J, Bennett BL, Karam LJ, Pettinato JS (2016) Stereo vision based automated solder ball height and substrate coplanarity inspection. IEEE Trans Autom Sci Eng 13(2):757–771. https://doi.org/10.1109/tase.2015.2403836

Wang J, Suenaga H, Liao H, Hoshi K, Yang L, Kobayashi E, Sakuma I (2015) Real-time computer-generated integral imaging and 3d image calibration for augmented reality surgical navigation. Comput Med Imaging Graph 40:147–159. https://doi.org/10.1016/j.compmedimag.2014.11.003

Santhanam A, Min Y, Kupelian P, Low D (2015) Th-ab-204-04: On the feasibility of a multi-3d kinect v2 camera system for monitoring radiation therapy treatment setup and improving patient safety. Med Phys 42:3714. https://doi.org/10.1118/1.4926171

Lepetit V, Moreno-Noguer F, Fua P (2009) Ep n p: An accurate o (n) solution to the p n p problem. Int J Comput Vis 81:155–166

Wang J, Meng MQH, Ren H (2015) Towards occlusion-free surgical instrument tracking: a modular monocular approach and an agile calibration method. IEEE Trans Autom Sci Eng 12(2):588–595. https://doi.org/10.1109/tase.2015.2388537

He Q, Hu C, Liu W, Wei N, Meng MQH, Liu L, Wang C (2013) Simple 3-d point reconstruction methods with accuracy prediction for multiocular system. Ieee-Asme Trans Mechatron 18(1):366–375. https://doi.org/10.1109/tmech.2011.2178423

Zhu M, He B, Yu J, Yuan F, Liu J (2022) Hydramarker: efficient, flexible, and multifold marker field generation. IEEE Trans Pattern Anal Mach Intell. https://doi.org/10.1109/tpami.2022.3212862

Zhang ZY (2000) A flexible new technique for camera calibration. IEEE Trans Pattern Anal Mach Intell 22(11):1330–1334. https://doi.org/10.1109/34.888718

Hocker A, Kartvelishvili V (1996) Svd approach to data unfolding. Nucl Instrum Methods Phys Res Sect A 372(3):469–481. https://doi.org/10.1016/0168-9002(95)01478-0

Yaniv Z (2015) Which pivot calibration? In: Medical imaging 2015: image-guided procedures, robotic interventions, and modeling, vol 9415. SPIE, pp 542–550

Wang S, Zhu M, Hu Y, Li D, Yuan F, Yu J (2022) Accurate detection and localization of curved checkerboard-like marker based on quadratic form. IEEE Trans Instrum Meas. https://doi.org/10.1109/tim.2022.3195277

Shi J (1994) Good features to track. In: 1994 Proceedings of IEEE conference on computer vision and pattern recognition. IEEE, pp 593–600

Shu C, Brunton A, Fiala M (2003) Automatic grid finding in calibration patterns using Delaunay triangulation. National Research Council of Canada, Ottawa

Anowar F, Sadaoui S, Selim B (2021) Conceptual and empirical comparison of dimensionality reduction algorithms (PCA, KPCA, LDA, MDS, SVD, LLE, ISOMAP, LE, ICA, t-SNE). Comput Sci Rev 40:100378. https://doi.org/10.1016/j.cosrev.2021.100378

Hu G, Zheng Y, Abualigah L, Hussien AG (2023) Detdo: an adaptive hybrid dandelion optimizer for engineering optimization. Adv Eng Inform 57(102):004. https://doi.org/10.1016/j.aei.2023.102004

Abualigah L, Ekinci S, Izci D, Zitar RA (2023) Modified elite opposition-based artificial hummingbird algorithm for designing fopid controlled cruise control system. Intell Autom Soft Comput. https://doi.org/10.32604/iasc.2023.040291

Zare M, Ghasemi M, Zahedi A, Golalipour K, Mohammadi SK, Mirjalili S, Abualigah L (2023) A global best-guided firefly algorithm for engineering problems. J Bionic Eng 20:1–30. https://doi.org/10.1007/s42235-023-00386-2

Agushaka JO, Ezugwu AE, Abualigah L (2023) Gazelle optimization algorithm: a novel nature-inspired metaheuristic optimizer. Neural Comput Appl 35(5):4099–4131. https://doi.org/10.1007/s00521-022-07854-6

Engels C, Stewénius H, Nistér D (2006) Bundle adjustment rules. Photogrammetric Comput Vis 2(32)

Chui CK, Chen G (2017) Kalman filtering. Springer, New York

Agarwal S, Mierle K (2022) The ceres solver team. Ceres Solver. http://ceres-solver.org. Accessed 18 Sept 2022

Xie X, Zhu M, He B, Xu J (2023) Image-guided navigation system for minimally invasive total hip arthroplasty (mitha) using an improved position-sensing marker. Int J Comput Assist Radiol Surg. https://doi.org/10.1007/s11548-023-02861-x

Wang J, Zhang T, Zhang Z, Meng MQH, Song S (2023) Tracking-by-registration: a robust approach for optical tracking system in surgical navigation. IEEE Trans Instrum Meas 72:1–10. https://doi.org/10.1109/TIM.2023.3312484

Zhang T, Wang J, Song S, Meng MQH (2022) Wearable surgical optical tracking system based on multi-modular sensor fusion. IEEE Trans Instrum Meas 71:1–11

Elfring R, de la Fuente M, Radermacher K (2010) Assessment of optical localizer accuracy for computer aided surgery systems. Comput Aided Surg 15(1–3):1–12. https://doi.org/10.3109/10929081003647239

Garcia-Vazquez V, Marinetto E, Santos-Miranda JA, Calvo FA, Desco M, Pascau J (2013) Feasibility of integrating a multi-camera optical tracking system in intra-operative electron radiation therapy scenarios. Phys Med Biol 58(24):8769–8782. https://doi.org/10.1088/0031-9155/58/24/8769

Casari FA, Navab N, Hruby LA, Kriechling P, Nakamura R, Tori R, dos Santos Nunes FDL, Queiroz MC, Furnstahl P, Farshad M (2021) Augmented reality in orthopedic surgery is emerging from proof of concept towards clinical studies: a literature review explaining the technology and current state of the art. Curr Rev Musculoskelet Med 14(2):192–203. https://doi.org/10.1007/s12178-021-09699-3

Baumann A, Schicho K, Klug C, Wagner A, Ewers R (2005) Computer-assisted navigational surgery in oral and maxillofacial surgery. Atlas Oral Maxillofac Surg Clin N Am 13(1):41–9. https://doi.org/10.1016/j.cxom.2004.10.002