Distributed monitoring of rail lateral buckling under axial loading

Fuzheng Sun1, Neil A. Hoult1, Liam J. Butler2, Merrina Zhang3
1Department of Civil Engineering, Queen’s University, Kingston, Canada
2Department of Civil Engineering, York University, Toronto, Canada
3National Research Council Canada, Automotive and Surface Transportation Research Centre, Ottawa, Canada

Tóm tắt

Distributed fiber optic sensors (DFOS) were used, for the first time, to monitor lateral buckling of a rail under axial loading with different boundary conditions. In the experiments, two types of DFOS systems were used to collect the distributed strain data, and the performance of the two systems was compared. The distributed strain data were used to develop a fitted strain plane at each cross-section along the rail, and axial strain and bending curvature were derived from the fitted strain plane. A data extrapolation method using the distributed curvature data was developed to evaluate the actual boundary conditions at the ends of the rail since they did not match assumed ideal behaviour. The distributed rail deflection along the length of rail was calculated by integrating distributed curvature data and the results were compared with the deflection measured by linear potentiometers (LPs).

Từ khóa


Tài liệu tham khảo

Kish A, Samavedam G (2013) Track buckling prevention: theory, safety concepts, and applications. U.S. Department of Transportation Federal Railroad Administration, Washington

Leishman EM, Hendry MT, Martin CD (2017) Canadian main track derailment trends, 2001 to 2014. Can J Civ Eng 44(11):927–934

Gonzalez F, Suarez B, Paulin J, Fernandez I (2008) Safety assessment of underground vehicles passing over highly resilient straight track in the presence of a broken rail. Proc Inst Mech Eng Part F 222(1):69–84

Suárez B, Rodriguez P, Vázquez M, Fernández I (2012) Safety assessment of underground vehicles passing over highly resilient curved tracks in the presence of a broken rail. Veh Syst Dyn 50(1):59–78

De Ruvo P, Ruvo GD, Distante A, Nitti M, Stella E, Marino F (2008) A visual inspection system for rail detection and tracking in real time railway maintenance. Open Cybernet Systemics J 2(1):57–67

Kish A, Kalay S, Hazell A, Schoengart J, Samavedam G (1993) Rail longitudinal force measurement evaluation studies using the track loading vehicle. Am Railway Eng Assoc Bull 742:315–342

Damljanović V, Weaver RL (2005) Laser vibrometry technique for measurement of contained stress in railroad rail. J Sound Vib 282(1–2):341–366

Vangi D, Virga A (2007) A practical application of ultrasonic thermal stress monitoring in continuous welded rails. Exp Mech 47(5):617–623

Kish A, Mui W (2003) Track buckling research. National Transportation Library Repository and Open Science Access Portal. https://rosap.ntl.bts.gov/view/dot/11985. Accessed 15 Dec 2020

Kish A, Samavedam G (2005) Improved destressing of continuous welded rail for better management of rail neutral temperature. Transp Res Rec 1916(1):56–65

Wheeler LN, Pannese E, Hoult NA, Take WA, Le H (2018) Measurement of distributed dynamic rail strains using a Rayleigh backscatter based fiber optic sensor: lab and field evaluation. Transp Geotech 14:70–80

Kouroussis G, Kinet D, Moeyaert V, Dupuy J, Caucheteur C (2016) Railway structure monitoring solutions using fibre Bragg grating sensors. Int J Rail Transp 4(3):135–150

Barrias A, Casas JR, Villalba S (2016) A review of distributed optical fiber sensors for civil engineering applications. Sensors 16(5):748

Minardo A, Coscetta A, Porcaro G, Giannetta D, Bernini R, Zeni L (2014) Distributed optical fiber sensors for integrated monitoring of railway infrastructures. In: 23rd International Conference on Optical Fibre Sensors. International Society for Optics and Photonics, vol. 9157, p 91575W

Minardo A, Porcaro G, Giannetta D, Bernini R, Zeni L (2013) Real-time monitoring of railway traffic using slope-assisted Brillouin distributed sensors. Appl Opt 52(16):3770–3776

Klug F, Lackner S, Lienhart W (2016) Monitoring of railway deformations using distributed fiber optic sensors. In: Proceedings of the Joint International Symposium on Deformation Monitoring (JISDM), Wien, Austria

Yoon H-J, Song K-Y, Kim J-S, Kim D-S (2011) Longitudinal strain monitoring of rail using a distributed fiber sensor based on Brillouin optical correlation domain analysis. NDT E Int 44(7):637–644

Barker C, Hoult NA, Zhang M (2020) Development of an axial strain measurement system for rails. J Perform Constr Facil 35(1):04020145

Sigurdardottir DH, Stearns J, Glisic B (2017) Error in the determination of the deformed shape of prismatic beams using the double integration of curvature. Smart Mater Struct 26(7):075002

The Light Connection (2020) Tight Buffer data sheet. 2020. https://www.thelightconnection.com/pdf/tightbuffer.pdf. Accessed 29 Mar 2021

Hoult NA, Ekim O, Regier R (2014) Damage/deterioration detection for steel structures using distributed fiber optic strain sensors. J Eng Mech 140(12):04014097

Brault A, Hoult NA, Greenough T, Trudeau I (2018) Monitoring of beams in an RC building during a load test using distributed sensors. J Perform Constr Facil 33(1):04018096

R.J. Corman Railroad Group (2006) When a train derails, many railroads turn to contractors to contain and clean up spills. https://www.progressiverailroading.com/mow/article/When-a-train-derails-many-railroads-turn-to-contractors-to-contain-and-clean-up-spills--13396. Accessed 29 Mar 2021

Kish A, Samavedam G, Wormley D (1998) Fundamentals of track lateral shift for high-speed rail applications. National Transportation Library Repository and Open Science Access Portal. https://rosap.ntl.bts.gov/view/dot/8515. Accessed 15 Dec 2020