Distinctive semantic features in the healthy adult brain

Springer Science and Business Media LLC - Tập 19 - Trang 296-308 - 2018
Megan Reilly1, Natalya Machado2, Sheila E. Blumstein3,4
1Department of Psychology, University of South Carolina, Columbia, USA
2Massachusetts General Hospital, Boston, USA
3Department of Cognitive, Linguistic and Psychological Sciences, Brown University, Providence, USA
4Brown Institute for Brain Science, Brown University, Providence, USA

Tóm tắt

The role of semantic features, which are distinctive (e.g., a zebra’s stripes) or shared (e.g. has four legs) for accessing a concept, has been studied in detail in early neurodegenerative disease such as semantic dementia (SD). However, potential neural underpinnings of such processing have not been studied in healthy adults. The current study examines neural activation patterns using fMRI while participants completed a feature verification task, in which they identified shared or distinctive semantic features for a set of natural kinds and man-made artifacts. The results showed that the anterior temporal lobe bilaterally is an important area for processing distinctive features, and that this effect is stronger within natural kinds than man-made artifacts. These findings provide converging evidence from healthy adults that is consistent with SD research, and support a model of semantic memory in which patterns of specificity of semantic information can partially explain differences in neural activation between categories.

Tài liệu tham khảo

Badre, D., Poldrack, R. A., Pare-Blagoev, E. J., Insler, R. Z., & Wagner, A. D. (2005). Dissociable controlled retrieval and generalized selection mechanisms in ventrolateral prefrontal cortex. Neuron, 47(6), 907–918. https://doi.org/10.1016/j.neuron.2005.07.023 Bedny, M., Hulbert, J. C., & Thompson-Schill, S. L. (2007). Understanding words in context: The role of Broca’s area in word comprehension. Brain Research, 1146, 101–114. https://doi.org/10.1016/j.brainres.2006.10.012 Beeman, M., Friedman, R. B., Grafman, J., Perez, E., Diamond, S., & Lindsay, M. B. (1994). Summation priming and coarse semantic coding in the right hemisphere. Journal of Cognitive Neuroscience, 6(1), 26–45. Bilenko, N., Grindrod, C., &Blumstein, S. E. (2009). Neural correlates of semantic competition during processing of ambiguous words. Journal of Cognitive Neuroscience, 21 (5), 960–975. Binder, J. R., & Desai, R. H. (2011). The neurobiology of semantic memory. Trends in Cognitive Sciences 15(11), 527–536. Binney, R. J., Embleton, K. V., Jefferies, E., Parker, G. J. M., & Lambon Ralph, M. A. (2010). The ventral and inferolateral aspects of the anterior temporal lobe are crucial in semantic memory: Evidence from a novel direct comparison of distortion-corrected fMRI, rTMS, and semantic dementia. Cerebral Cortex, 20(11), 2728–2738. Bonner, M. F., Peelle, J. E., Cook, P. A., & Grossman, M. (2013). Heteromodal conceptual processing in the angular gyrus. NeuroImage, 71, 175–186. https://doi.org/10.1016/j.neuroimage.2013.01.006 Bonner, M. F., & Price, A. R. (2013). Where is the anterior temporal lobe and what does it do? Journal of Neuroscience 6, 4213–4215. Brainard, D. H. (1997). The Psychophysics Toolbox. Spatial Vision, 10, 433–436. Brysbaert, M., & New, B. (2009). Moving beyond Kucera and Francis: A critical evaluation of current word frequency norms and the introduction of a new and improved word frequency measure for American English. Behavior Research Methods, 41(4), 977–990. https://doi.org/10.3758/BRM.41.4.977 Canini, M., Della Rosa, P. A., Catricalà, E., Strijkers, K., Branzi, F. M., Costa, A., & Abutalebi, J. (2016). Semantic interference and its control: A functional neuroimaging and connectivity study. Human Brain Mapping, 37(11), 41794196. Catricalà, E., Della Rosa, P. A., Plebani, V., Perani, D., Gerrard, P., & Cappa, S. F. (2015). Semantic feature degradation and naming performance: Evidence from neurodegenerative disorders. Brain and Language, 147, 58–65. Clarke, A., & Tyler, L. K. (2014). Object-specific semantic coding in human perirhinal cortex. Journal of Neuroscience 34(14), 4766–4775. Cox, R. W. (1996). AFNI: Software for analysis and visualization of functional magnetic resonance neuroimages. Computers and Biomedical Research, 29, 162–173. Davey, J., Thompson, H. E., Hallam, G., Karapanagiotidis, T., Murphy, C., De Caso, I., . . . Jefferies, E. (2016). Exploring the role of the posterior middle temporal gyrus in semantic cognition: Integration of anterior temporal lobe with executive processes. NeuroImage 137, 165–177. Devlin, J. T., Gonnerman, L. M., Andersen, E. S., & Seidenberg, M. S. (1998). Category-specific semantic deficits in focal and widespread brain damage: A computational account. Journal of Cognitive Neuroscience 10(1), 7794. Devlin, J. T., Moore, C. J., Mummery, C. J., Gorno-Tempini, M. L., Phillips, J. A., Noppeney, U., . . . Price, C. J. (2002). Anatomic constraints on cognitive theories of category specificity. NeuroImage, 15(3), 675–685. https://doi.org/10.1006/nimg.2001.1002 Dronkers, N. F., Wilkins, D. P., Van Valin, R. D., Jr., Redfern, B. B., & Jaeger, J. J. (2004). Lesion analysis of the brain areas involved in language comprehension. Cognition, 92(1/2), 145–177. https://doi.org/10.1016/j.cognition.2003.11.002 Garrard, P., Lambon Ralph, M. A., Patterson, K., Pratt, K. H., & Hodges, J. R. (2005). Semantic feature knowledge and picture naming in dementia of Alzheimer’s type: A new approach. Brain and Language, 93(1), 79–94. https://doi.org/10.1016/j.bandl.2004.08.003 Gorno-Tempini, M. L., & Price, A. R. (2001). Identification of famous faces and buildings. Brain, 124, 2087–2097. Grabowski, T. J., Damasio, A., Tranel, D., Ponto, L. L. B., Hichwa, R. D., & Damasio, A. (2001). A role for left temporal pole in the retrieval of words for unique entities. Human Brain Mapping, 13, 199–212. Grossman, M., Smith, E. E., Koenig, P., Glosser, G., DeVita, C., Moore, P., & McMillan, C. (2002). The neural basis for categorization in semantic memory. NeuroImage 17, 1549–1561. Hodges, J. R., Patterson, K., Oxbury, S., & Funnell, E. (1992). Semantic dementia: Progressive fluent aphasia with temporal lobe atrophy. Brain, 115(6), 1783–1806. Hsu, N. S., Schlichting, M. L., & Thompson-Schill, S. L. (2014). Feature diagnosticity affects representations of novel and familiar objects. Journal of Cognitive Neuroscience, 26(12), 2735–2749. https://doi.org/10.1162/jocn_a_00661 Jefferies, E. (2013). The neural basis of semantic cognition: Converging evidence from neuropsychology, neuroimaging and TMS. Cortex 49, 611–625. Jefferies, E., & Lambon Ralph, M. A. (2006). Semantic impairment in stroke aphasia versus semantic dementia: A case-series comparison. Brain, 129, 2132–2147. Jefferies, E., Patterson, K., & Lambon Ralph, M. A. (2008). Deficits of knowledge versus executive control in semantic cognition insights from cued naming. Neuropsychologia, 46(2), 649–658. Jouen, A. L., Ellmore, T. M., Madden, C. J., Pallier, C., Dominey, P. F., & Ventre-Dominey, J. (2015). Beyond the word and image: Characteristics of a common meaning system for language and vision revealed by functional and structural imaging. NeuroImage, 106, 72–85. https://doi.org/10.1016/j.neuroimage.2014.11.024 Kan, I. P., & Thompson-Schill, S. L. (2004). Effect of name agreement on prefrontal activity during overt and covert picture naming. Cognitive, Affective, & Behavioral Neuroscience, 4(1), 43–57. Kleiner, M., Brainard, D. H., Pelli, D. G., Ingling, A., Murray, R., & Broussard, C. (2007). What’s new in Psychtoolbox-3? Perception, 36(14), 1–16. Koustaal, W., Wagner, A. D., Rotte, M., Maril, A., Buckner, R. L., & Schacter, D. L. (2001). Perceptual specificity in visual object priming: Functional magnetic resonance imaging evidence for a laterality difference in fusiform cortex. Neuropsychologia, 39(2), 184–199. Laisney, M., Giffard, B., Belliard, S., de la Sayette, V., Desgranges, B., & Eustache, F. (2011). When the zebra loses its stripes: Semantic priming in early Alzheimer’s disease and semantic dementia. Cortex, 47(1), 35–46. https://doi.org/10.1016/j.cortex.2009.11.001 Lambon Ralph, M. A., Jefferies, E., Patterson, K., & Rogers, T. T. (2017). The neural and computational bases of semantic cognition. Nature Reviews Neuroscience 18, 42–55. Lambon Ralph, M. A., Lowe, C., & Rogers, T. T. (2007). Neural basis of category-specific semantic deficits for living things: Evidence from semantic dementia, HSVE and a neural network model. Brain, 130(4), 1127–1137. Lambon Ralph, M. A., Pobric, G., & Jefferies, E. (2009). Conceptual knowledge is underpinned by the temporal pole bilaterally: Convergent evidence from rTMS. Cerebral Cortex, 19(4), 832–838. https://doi.org/10.1093/cercor/bhn131 Landauer, T. K., & Dumais, S. T. (1997). A solution to Plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychological Review, 104, 211–240. Lawrence, M. A. (2013). ez: Easy analysis and visualization of factorial experiments [Computer software]. Retrieved from https://rdrr.io/cran/ez/ Libon, D. J., Rascovsky, K., Powers, J., Irwin, D. J., Boller, A., Weinberg, D., . . . Grossman, M. (2013). Comparative semantic profiles in semantic dementia and Alzheimer’s disease. Brain, 136(Pt. 8), 2497–2509. https://doi.org/10.1093/brain/awt165 Marques, J. F. (2007). The general/specific breakdown of semantic memory and the nature of superordinate knowledge: Insights from superordinate and basic-level feature norms. Cognitive Neuropsychology, 24(8), 879–903. https://doi.org/10.1080/02643290701789436 Marques, J. F., Mares, I., Martins, M. E., & Martins, I. P. (2013). The hierarchical organization of semantic knowledge in stroke aphasia: The role of feature sharedness and executive function. Journal of Neurolinguistics, 26(5), 552–560. https://doi.org/10.1016/j.jneuroling.2013.03.005 McRae, K., & Cree, G. (2002). Factors underlying category-specific deficits. In E. M. E. Forde & G. Humphreys (Eds.), Category specificity in mind and brain. East Sussex, UK: Psychology Press. McRae, K., Cree, G. S., & Westmacott, R. (1999). Further evidence for feature correlations in semantic memory. Canadian Journal of Experimental Psychology 53(5), 360–373. McRae, K., De Sa, V., & Seidenberg, M. (1997). On the nature and scope of feature representation of word meaning. Journal of Experimental Psychology: General, 126, 99–130. McRae, K., Hare, M., Elman, J. L., & Ferretti, T. (2005). A basis for generating expectancies for verbs from nouns. Memory & Cognition, 33, 1174. Mechelli, A., Sartori, G., Orlandi, P., & Price, C. J. (2006). Semantic relevance explains category deficits in medial fusiform gyri. NeuroImage, 30, 992–1002. Moss, H. E., Stamatakis, E. A., & Tyler, L. K. (2006). Binding crossmodal object features in perirhinal cortex. Proceedings of the National Academy of Sciences, 103(21), 8239–8244. Moss, H. E., Tyler, L. K., Durrant-Peatfield, M., & Bunn, E. M. (1998). ‘Two eyes of a see-through’: Impaired and intact semantic knowledge in a case of selective deficit for living things. Neurocase, 4(4/5), 291–310. https://doi.org/10.1080/13554799808410629 Moss, H. E., & Tyler, L. K. (2000). A progressive category-specific semantic deficit for non-living things. Neuropsychologia, 38(1), 60–82. Mummery, C. J., Patterson, K., Price, C. J., Ashburner, J., Frackowiak, R. S. J., & Hodges, J. R. (2001). A voxel-based morphometry study of semantic dementia: Relationship between temporal lobe atrophy and semantic memory. Annals of Neurology, 47(1), 36–45. Nagel, I. E., Schumacher, E. H., Goebel, R., & D’Esposito, M. (2008). Functional MRI investigation of verbal selection mechanisms in lateral prefrontal cortex. NeuroImage, 43(4), 801–807. https://doi.org/10.1016/j.neuroimage.2008.07.017 Noonan, K. A., Jefferies, E., Visser, M., & Lambon Ralph, M. A. (2013). Going beyond inferior prefrontal involvement in semantic control: Evidence for the additional contribution of dorsal angular gyrus and posterior middle temporal cortex. Journal of Cognitive Neuroscience, 25(11), 1824–1850. Olson, I. R., McCoy, D., Klobusicky, E., & Ross, L. A. (2013). Social cognition and the anterior temporal lobes: A review and theoretical framework. Social Cognitive and Affective Neuroscience, 8(2), 123–133. https://doi.org/10.1093/scan/nss119 Patterson, K., Kopelman, M. D., Woollams, A. M., Brownsett, S. L. E., Geranmayeh, F., & Wise, R. J. S. (2014). Semantic memory: Which side are you on? Neuropsychologia. https://doi.org/10.1016/j.neuropsychologia.2014.11.024 Patterson, K., Nestor, P. J., & Rogers, T. T. (2007). Where do you know what you know? The representation of semantic knowledge in the human brain. Nature Reviews Neuroscience, 8(12), 976–987. Peelle, J. E., Troiani, V., & Grossman, M. (2009). Interaction between process and content in semantic memory: An fMRI study of noun feature knowledge. Neuropsychologia, 47(4), 995–1003. Peelen, M. V. M., & Caramazza, A. (2012). Conceptual object representations in human anterior temporal cortex. Journal of Neuroscience, 32, 15728–15736. Pobric, G., Lambon Ralph, M. A., & Jefferies, E. (2009). The role of the anterior temporal lobes in the comprehension of concrete and abstract words: rTMS evidence. Cortex, 45(9), 1104–1110. https://doi.org/10.1016/j.cortex.2009.02.006 Price, C. J. (2012). A review and synthesis of the first 20 years of PET and fMRI studies of heard speech, spoken language and reading. Neuroimage, 62(2), 816-847 Price, C. J., Hope, T. M., & Seghier, M. L. (2017). Ten problems and solutions when predicting individual outcome from lesion site after stroke. NeuroImage, 145(Pt. B), 200–208. https://doi.org/10.1016/j.neuroimage.2016.08.006 R-Core-Team (2014). R: A language and environment for statistical computing [Computer software]. Vienna, Austria: R Foundation for Statistical Computing. Retrieved from htp://www/R-project.org/ Randall, B., Moss, H. E., Rodd, J. M., Greer, M., & Tyler, L. K. (2004). Distinctiveness and correlation in conceptual structure: Behavioral and computational studies. Journal of Experimental Psychology: Learning, Memory and Cognition 30(2), 393–406. Raposo, A., Mendes, M., & Marques, J. F. (2012). The hierarchical organization of semantic memory: Executive function in the processing of superordinate concepts. NeuroImage, 59(2), 1870–1878. https://doi.org/10.1016/j.neuroimage.2011.08.072 Reilly, M., Machado, N., & Blumstein, S. E. (2015). Hemispheric lateralization of semantic feature distinctiveness. Neuropsychologia, 75, 99–108. https://doi.org/10.1016/j.neuropsychologia.2015.05.025 Rice, G. E., Hoffman, P., & Lambon Ralph, M. A. (2015a). Graded specialization within and between the anterior temporal lobes. Annals of the New York Academy of Sciences 1359(1), 84–97. Rice, G. E., Lambon Ralph, M. A., & Hoffman, P. (2015b). The roles of left versus right anterior temporal lobes in conceptual knowledge: An ALE meta-analysis of 97 functional neuroimaging studies. Cerebral Cortex, 25(11), 4374–4391. https://doi.org/10.1093/cercor/bhv024 Righi, G., Blumstein, S. E., Mertus, J., & Worden, M. S. (2010). Neural systems underlying lexical competition: An eye tracking and fMRI study. Journal of Cognitive Neuroscience 22(2), 213224. Robinson, G., Blair, J., & Cipolotti, L. (1998). Dynamic aphasia: An inability to select between competing verbal responses? Brain, 121, 77–89. Rogers, T. T., Hocking, J., Mechelli, A., Patterson, K., & Price, C. (2005). Fusiform activation to animals is driven by the process, not the stimulus. Journal of Cognitive Neuroscience 17(3), 434–445. Rogers, T. T., Ivanoui, A., Patterson, K., & Hodges, J. R. (2006). Semantic memory in Alzheimer’s disease and the fronto-temporal dementias: A longitudinal study of 236 patients. Neuropsychology, 20(3), 319–335. Rogers, T. T., Patterson, K., Jefferies, E., & Ralph, M. A. (2015). Disorders of representation and control in semantic cognition: Effects of familiarity, typicality, and specificity. Neuropsychologia, 76, 220–239. https://doi.org/10.1016/j.neuropsychologia.2015.04.015 Rogers, T. T., Ralph, M. A., Hodges, J. R., & Patterson, K. (2004). Natural selection: The impact of semantic impairment on lexical and object decision. Cognitive Neuropsychology, 21(2), 331–352. https://doi.org/10.1080/02643290342000366 Ross, L. A., & Olson, I. R. (2010). Social cognition and the anterior temporal lobes. NeuroImage, 49(4), 3452–3462. https://doi.org/10.1016/j.neuroimage.2009.11.012 Sabsevitz, D. S., Mdeler, D. A., Seidenberg, M., & Binder, J. R. (2005). Modulation of the semantic system by word imageability. NeuroImage 27, 188–200. Santi, A., Raposo, A., Frade, S., & Marques, J.F. (2016). Concept typicality responses in the semantic memory network. Neuropsychologia 93, 167–175. Schnur, T. T., Lee, E., Coslett, H. B., Schwartz, M. F., & Thompson-Schill, S. L. (2005). When lexical selection gets tough, the LIFG gets going: A lesion analysis study of interference during word production. Brain and Language, 95(1), 12–13. https://doi.org/10.1016/j.bandl.2005.07.008 Seghier, M. L. (2013). The angular gyrus: Multiple functions and multiple subdivisions. Neuroscientist, 19(1), 43–61. https://doi.org/10.1177/1073858412440596 Simmons, W. K., & Martin, A. (2009). The anterior temporal lobes and the functional architecture of semantic memory. Journal of the International Neuropsychological Society, 15(5), 645–649. https://doi.org/10.1017/S1355617709990348 Simons, J. S., Koutstaal, W., Prince, S., Wagner, A. D., & Schacter, D. L. (2003). Neural mechanisms of visual object priming: Evidence for perceptual and semantic distinctions in fusiform cortex. NeuroImage, 19(3), 613–626. https://doi.org/10.1016/s1053-8119(03)00096-x Talairach, J., & Tournoux, P. (1988). Co-planar stereotaxic atlas of the human brain. New York, NY: Thieme Medical. Taylor, K. I., Moss, H. E., & Tyler, L. K. (2007). The conceptual structure account: A cognitive model of semantic memory and its neural instantiation. In J. Hart & M. Kraut (Eds.), The neural basis of semantic memory (pp. 265–201). Cambridge, UK: Cambridge University Press. Thompson-Schill, S. L., D’Esposito, M., Aguirre, G. K., & Farah, M. J. (1997). Role of left inferior prefrontal cortex in retrieval of semantic knowledge: A reevaluation. Proceedings of the National Academy of the Sciences of the United States of America, 94, 14792–14797. Tranel, D. (2009). The left temporal pole is important for retrieving words for unique concrete entities. Aphasiology, 23(7/8), 867–884. https://doi.org/10.1080/02687030802586498 Turken, A. U., & Dronkers, N. F. (2011). The neural architecture of the language comprehension network: Converging evidence from lesion and connectivity analyses. Frontiers in System Neuroscience, 5, 1. https://doi.org/10.3389/fnsys.2011.00001 Tyler, L.K., & Moss, H. E. (2001). Towards a distributed account of conceptual knowledge. Trends in Cognitive Sciences 5(6), 244-52. Tyler, L. K., Stamatakis, E. A., Bright, J. I. M., Abdallah, S., Rodd, J. M., & Moss, H. (2004). Processing objects at different levels of specificity. Journal of Cognitive Neuroscience, 16(3), 351–362. Ursino, M., Cuppini, C., Cappa, S. F., & Catricalá, E. (2018). A feature-based neurocomputational model of semantic memory. Cognitive Neurodynamics, 1–23. https://doi.org/10.1007/s11571-018-9494-0 Visser, M. Lambon Ralph, M. A. (2011). Differential contributions of bilateral anterior temporal lobe and left anterior superior temporal gyrus to semantic processes. Journal of Cognitive Neuroscience, 23(10), 3121–3131. Von der Heide, R. J., Skipper, L. M., & Olson, I. R. (2013). Anterior temporal face patches: A meta-analysis and empirical study. Frontiers in Human Neuroscience, 7(17). https://doi.org/10.3389/fnhum.2013.00017 Wilshire, C. E., & McCarthy, R. A. (2002). Evidence for a context-sensitive word retrieval disorder in a case of nonfluent aphasia. Cognitive Neuropsychology, 19(2), 165–186. https://doi.org/10.1080/02643290143000169 Woollams, A. M. (2012). Apples are not the only fruit: the effects of concept typicality on semantic representation in the anterior temporal lobe. Frontiers in Human Neuroscience, 6, 85. https://doi.org/10.3389/fnhum.2012.00085 Wright, P., Randall, B., Clarke, A., & Tyler, L. K. (2015). The perirhinal cortex and conceptual processing: Effects of feature-based statistics following damage to the anterior temporal lobes. Neuropsychologia 76, 192–207.