Distinct roles for different autophagy-associated genes in the virulence of the fungal wheat pathogen Zymoseptoria tritici
Tài liệu tham khảo
Asakura, 2009, Atg26-Mediated Pexophagy Is Required for Host Invasion by the Plant Pathogenic Fungus Colletotrichum orbiculare, Plant Cell, 21, 1291, 10.1105/tpc.108.060996
Cheong, 2008, The Atg1 Kinase Complex Is Involved in the Regulation of Protein Recruitment to Initiate Sequestering Vesicle Formation for Nonspecific Autophagy in Saccharomyces cerevisiae, Mol. Biol. Cell, 19, 668, 10.1091/mbc.e07-08-0826
Child
Corral-Ramos, 2015, Autophagy contributes to regulation of nuclear dynamics during vegetative growth and hyphal fusion in Fusarium oxysporum, Autophagy, 11, 131, 10.4161/15548627.2014.994413
Deng, 2013, The role of Snx41-based pexophagy in Magnaporthe development, PLoS ONE, 8, e79128, 10.1371/journal.pone.0079128
Di Tommaso, 2011, T-Coffee: a web server for the multiple sequence alignment of protein and RNA sequences using structural information and homology extension, Nucleic Acids Res, 39, W13, 10.1093/nar/gkr245
Duan, 2013, Linkage of autophagy to fungal development, lipid storage and virulence in Metarhizium robertsii, Autophagy, 9, 538, 10.4161/auto.23575
Duncan, 2000, Cytological analysis of wheat infection by the leaf blotch pathogen Mycosphaerella graminicola, Mycol. Res., 104, 1074, 10.1017/S0953756299002294
Feng, 2014, The machinery of macroautophagy, Cell Res., 24, 24, 10.1038/cr.2013.168
Filomeni, 2015, Oxidative stress and autophagy: the clash between damage and metabolic needs, Cell Death Differ., 22, 377, 10.1038/cdd.2014.150
Fones, 2015, The impact of Septoria tritici Blotch disease on wheat: An EU perspective, Fungal Genet. Biol., 79, 3, 10.1016/j.fgb.2015.04.004
Fones, 2017, A role for random, humidity-dependent epiphytic growth prior to invasion of wheat by Zymoseptoria tritici, Fungal Genet. Biol., 106, 51, 10.1016/j.fgb.2017.07.002
Francisco, 2019, Morphological changes in response to environmental stresses in the fungal plant pathogen Zymoseptoria tritici, Sci. Rep., 9, 9642, 10.1038/s41598-019-45994-3
Ichimura, 2000, A ubiquitin-like system mediates protein lipidation, Nature, 408, 488, 10.1038/35044114
Josefsen, 2012, Autophagy provides nutrients for nonassimilating fungal structures and is necessary for plant colonization but not for infection in the necrotrophic plant pathogen Fusarium graminearum, Autophagy, 8, 326, 10.4161/auto.18705
Kabeya, 2009, Characterization of the Atg17-Atg29-Atg31 complex specifically required for starvation-induced autophagy in Saccharomyces cerevisiae, Biochem. Biophys. Res. Commun., 389, 612, 10.1016/j.bbrc.2009.09.034
Kema, 2018, Stress and sexual reproduction affect the dynamics of the wheat pathogen effector AvrStb6 and strobilurin resistance, Nat Genet, 50, 375, 10.1038/s41588-018-0052-9
Kema, 1996, Histology of the pathogenesis of Mycosphaerella graminicola in wheat, Phytopathology, 86, 777, 10.1094/Phyto-86-777
Keon, 2007, Transcriptional adaptation of Mycosphaerella graminicola to programmed cell death (PCD) of its susceptible wheat host, Mol. Plant Microbe Interact., 20, 178, 10.1094/MPMI-20-2-0178
Kershaw, 2009, Genome-wide functional analysis reveals that infection-associated fungal autophagy is necessary for rice blast disease, PNAS, 106, 15967, 10.1073/pnas.0901477106
Khan, 2012, Multifunction of autophagy-related genes in filamentous fungi, Microbiol. Res., 167, 339, 10.1016/j.micres.2012.01.004
Kilaru, 2015, A codon-optimized green fluorescent protein for live cell imaging in Zymoseptoria tritici, Fungal Genet. Biol., 79, 125, 10.1016/j.fgb.2015.03.022
King, 2017, A conserved fungal glycosyltransferase facilitates pathogenesis of plants by enabling hyphal growth on solid surfaces, PLoS Pathog., 13, e1006672, 10.1371/journal.ppat.1006672
Kiššová, 2007, Selective and Non-Selective Autophagic Degradation of Mitochondria in Yeast ND ES RIB, Autophagy, 4, 329, 10.4161/auto.4034
Klionsky, 2011, A comprehensive glossary of autophagy-related molecules and processes (2 nd edition), Autophagy, 7, 1273, 10.4161/auto.7.11.17661
Liu, 2018, Lipidation-independent vacuolar functions of Atg8 rely on its noncanonical interaction with a vacuole membrane protein, eLife, 7, e41237, 10.7554/eLife.41237
Liu, 2017, Autophagy-related protein MoAtg14 is involved in differentiation, development and pathogenicity in the rice blast fungus Magnaporthe oryzae, Sci. Rep., 7
Liu, 2007, Involvement of a Magnaporthe grisea serine/threonine kinase gene, MgATG1, in Appressorium turgor and pathogenesis, Eukaryot. Cell, 6, 997, 10.1128/EC.00011-07
Lv, 2017, Genome-wide functional analysis reveals that autophagy is necessary for growth, sporulation, deoxynivalenol production and virulence in Fusarium graminearum, Sci. Rep., 7, 11062, 10.1038/s41598-017-11640-z
Lv, 2020, The sorting nexin FgAtg20 is involved in the Cvt pathway, non-selective macroautophagy, pexophagy and pathogenesis in Fusarium graminearum, Cell. Microbiol., 22, e13208, 10.1111/cmi.13208
Lynch-Day, 2010, The Cvt pathway as a model for selective autophagy, FEBS Lett., 584, 1359, 10.1016/j.febslet.2010.02.013
Maeda, 2017, Autophagy-independent function of Atg8 in lipid droplet dynamics in yeast, J. Biochem., 161, 339
Maeda, 2015, A defect of the vacuolar putative lipase Atg15 accelerates degradation of lipid droplets through lipolysis A defect of the vacuolar putative lipase Atg15 accelerates degradation of lipid droplets through lipolysis, Autophagy, 11, 1247, 10.1080/15548627.2015.1056969
Meiling-Wesse, 2002, Ccz1p/Aut11p/Cvt16p is essential for autophagy and the cvt pathway, FEBS Lett., 526, 71, 10.1016/S0014-5793(02)03119-8
Meng, 2020, UvAtg8-Mediated Autophagy Regulates Fungal Growth, Stress Responses, Conidiation, and Pathogenesis in Ustilaginoidea virens, Rice, 13, 10.1186/s12284-020-00418-z
Mikawa, 2010, Fission yeast Vps1 and Atg8 contribute to oxidative stress resistance, Genes Cells, 15, 229, 10.1111/j.1365-2443.2009.01376.x
Minina, 2014, Autophagy as initiator or executioner of cell death, Trends Plant Sci., 19, 692, 10.1016/j.tplants.2014.07.007
Mizushima, 2010, The role of the Atg1/ULK1 complex in autophagy regulation, Curr. Opin. Cell Biol., 22, 132, 10.1016/j.ceb.2009.12.004
Mizushima, 2011, Autophagy: Renovation of cells and tissues, Cell, 147, 728, 10.1016/j.cell.2011.10.026
Mizushima, 2010, Autophagy in mammalian development and differentiation, Nat. Cell Biol., 12, 823, 10.1038/ncb0910-823
Motteram, 2009, Molecular characterization and functional analysis of MgNLP, the sole NPP1 domain-containing protein, from the fungal wheat leaf pathogen Mycosphaerella graminicola, Mol. Plant Microbe Interact., 22, 790, 10.1094/MPMI-22-7-0790
Nadal, 2010, The autophagy genes atg8 and atg1 affect morphogenesis and pathogenicity in Ustilago maydis, Mol. Plant Pathol, 11, 463, 10.1111/j.1364-3703.2010.00620.x
Nakatogawa, 2007, Atg8, a Ubiquitin-like Protein Required for Autophagosome Formation, Mediates Membrane Tethering and Hemifusion, Cell, 130, 165, 10.1016/j.cell.2007.05.021
Nakatogawa, 2012, The Autophagy-related Protein Kinase Atg1 Interacts with the Ubiquitin-like Protein Atg8 via the Atg8 Family Interacting Motif to Facilitate Autophagosome Formation, J. Biol. Chem., 287, 28503, 10.1074/jbc.C112.387514
Nguyen, 2011, Autophagy-related lipase FgATG15 of Fusarium graminearum is important for lipid turnover and plant infection, Fungal Genet. Biol., 48, 217, 10.1016/j.fgb.2010.11.004
Nitsche, 2013, Autophagy promotes survival in aging submerged cultures of the filamentous fungus Aspergillus niger, Appl. Microbiol. Biotechnol., 97, 8205, 10.1007/s00253-013-4971-1
Orvedahl, 2009, Eating the enemy within: Autophagy in infectious diseases, Cell Death Differ., 16, 57, 10.1038/cdd.2008.130
Palma-Guerrero, 2016, Comparative transcriptomic analyses of Zymoseptoria tritici strains show complex lifestyle transitions and intraspecific variability in transcription profiles, Mol. Plant Pathol, 17, 845, 10.1111/mpp.12333
Parzych, 2018, A newly characterized vacuolar serine carboxypeptidase, Atg42/Ybr139w, is required for normal vacuole function and the terminal steps of autophagy in the yeast Saccharomyces cerevisiae, Mol. Biol. Cell, 29, 1089, 10.1091/mbc.E17-08-0516
Pinan-Lucarré, 2005, Accelerated cell death in Podospora autophagy mutants, Eukaryot. Cell, 4, 1765, 10.1128/EC.4.11.1765-1774.2005
Pinar, 2013, Live-cell imaging of Aspergillus nidulans autophagy, Autophagy, 9, 1024, 10.4161/auto.24483
Pollack, 2009, Autophagy in filamentous fungi, Fungal Genet. Biol., 46, 1, 10.1016/j.fgb.2008.10.010
Rambold, 2015, Fatty Acid Trafficking in Starved Cells: Regulation by Lipid Droplet Lipolysis, Autophagy, and Article Fatty Acid Trafficking in Starved Cells: Regulation by Lipid Droplet Lipolysis, Autophagy, and Mitochondrial Fusion Dynamics, Dev. Cell, 32, 678, 10.1016/j.devcel.2015.01.029
Reggiori, 2013, Autophagic processes in yeast: Mechanism, machinery and regulation, Genetics, 194, 341, 10.1534/genetics.112.149013
Ren, 2017, The autophagy-related gene BcATG1 is involved in fungal development and pathogenesis in Botrytis cinerea, Mol. Plant Pathol, 18, 238, 10.1111/mpp.12396
Richie, 2007, Unexpected link between metal ion deficiency and autophagy in Aspergillus fumigatus, Eukaryot. Cell, 6, 2437, 10.1128/EC.00224-07
Rudd, 2015, Transcriptome and Metabolite Profiling of the Infection Cycle of Zymoseptoria tritici on Wheat Reveals a Biphasic Interaction with Plant Immunity Involving Differential Pathogen Chromosomal Contributions and a Variation on the Hemibiotrophic Lifest, Plant Physiol., 167, 1158, 10.1104/pp.114.255927
Sánchez-Vallet, 2015, Is Zymoseptoria tritici a hemibiotroph?, Fungal Genet. Biol., 79, 29, 10.1016/j.fgb.2015.04.001
Shi, 2019, CpATG8, a homolog of yeast autophagy protein ATG8, is required for pathogenesis and hypovirus accumulation in the chest blight fungus, Front. Cell. Infect. Microbiol., 9, 1, 10.3389/fcimb.2019.00222
Shimamura, 2019, Autophagy-Inducing Factor Atg1 Is Required for Virulence in the Pathogenic Fungus Candida glabrata, Front. Microbiol., 10, 10.3389/fmicb.2019.00027
Shimizu, 2004, Role of Bcl-2 family proteins in a non-apoptopic programmed cell death dependent on autophagy genes, Nat. Cell Biol., 6, 1221, 10.1038/ncb1192
Shoji, 2006, Vacuolar membrane dynamics in the filamentous fungus Aspergillus oryzae, Eukaryot. Cell, 5, 411, 10.1128/EC.5.2.411-421.2006
Shoji, 2011, Autophagy in basal hyphal compartments: A green strategy of great recyclers, Fungal Biol. Rev., 25, 79, 10.1016/j.fbr.2011.04.001
Shoji, 2010, Macroautophagy-mediated degradation of whole nuclei in the filamentous fungus Aspergillus oryzae, PLoS ONE, 5, e15650, 10.1371/journal.pone.0015650
Sidhu, 2015
Sidhu, 2015, Exploitation of sulfonylurea resistance marker and non-homologous end joining mutants for functional analysis in Zymoseptoria tritici, Fungal Genet. Biol., 79, 102, 10.1016/j.fgb.2015.04.015
Singh, 2009, Autophagy regulates lipid metabolism, Nature, 458, 1131, 10.1038/nature07976
Suffert, 2019, Sexual Reproduction in the Fungal Foliar Pathogen Zymoseptoria tritici Is Driven by Antagonistic Density Dependence Mechanisms, Microb. Ecol., 77, 110, 10.1007/s00248-018-1211-3
Sumita, 2017, Characterization of the autophagy-related gene BmATG8 in Bipolaris maydis, Fungal Biology, 121, 785, 10.1016/j.funbio.2017.05.008
Suzuki, 2001, The pre-autophagosomal structure organized by concerted functions of APG genes is essential for autophagosome formation, EMBO J., 20, 5971, 10.1093/emboj/20.21.5971
Suzuki, 2007, Hierarchy of Atg proteins in pre-autophagosomal structure organization, Genes Cells, 12, 209, 10.1111/j.1365-2443.2007.01050.x
Tamura, 2010, Atg8 regulates vacuolar membrane dynamics in a lipidation-independent manner in Pichia pastoris, J. Cell Sci., 123, 4107, 10.1242/jcs.070045
Torggler, 2017, Assays to Monitor Autophagy in Saccharomyces cerevisiae, Cells, 6, 23, 10.3390/cells6030023
Torriani, 2015, Zymoseptoria tritici: A major threat to wheat production, integrated approaches to control, Fungal Genet. Biol., 79, 8, 10.1016/j.fgb.2015.04.010
Veneault-Fourrey, 2006, Autophagic Fungal Cell Death Is Necessary for Infection by the Rice Rice Blast Fungus, Science, 312, 580, 10.1126/science.1124550
Voigt, 2013, Autophagy genes Smatg8 and Smatg4 are required for fruiting-body development, vegetative growth and ascospore germination in the filamentous ascomycete Sordaria macrospora, Autophagy, 9, 33, 10.4161/auto.22398
Wang, 2019, Independent losses and duplications of autophagy-related genes in fungal tree of life, Environ. Microbiol., 21, 226, 10.1111/1462-2920.14451
Xie, 2007, Autophagosome formation: Core machinery and adaptations, Nat. Cell Biol., 9, 1102, 10.1038/ncb1007-1102
Yanagisawa, 2013, Functional analysis of Aoatg1 and detection of the Cvt pathway in Aspergillus oryzae, FEMS Microbiol. Lett., 338, 168, 10.1111/1574-6968.12047
Yemelin, 2017, Identification of factors involved in dimorphism and pathogenicity of Zymoseptoria tritici, PLoS ONE, 12, e0183065, 10.1371/journal.pone.0183065
Ying, S.H., Liu, J., Chu, X.L., Xie, X.Q. & Feng, M.G. (2016) The autophagy-related genes BbATG1 and BbATG8 have different functions in differentiation, stress resistance and virulence of mycopathogen Beauveria bassiana. Scientific Reports, 6, 1–12. https://doi.org/10.1038/srep26376.
Zhan, 2017, Genome-Wide Identification and Analysis of MAPK and MAPKK Gene Families in Bread Wheat (Triticum aestivum L.), Genes, 8, 284, 10.3390/genes8100284
Zhang, 2007, The role of autophagy in mitochondria maintenance: Characterization of mitochondrial functions in autophagy-deficient S. cerevisiae strains, Autophagy, 3, 337, 10.4161/auto.4127
van Zutphen, 2014, Lipid droplet autophagy in the yeast Saccharomyces cerevisiae, Mol. Biol. Cell, 25, 290, 10.1091/mbc.e13-08-0448
Zwiers, 2001, Efficient Agrobacterium tumefaciens-mediated gene disruption in the phytopathogen Mycosphaerella graminicola, Curr. Genet., 39, 388, 10.1007/s002940100216
Goodwin, S. B., B. M'Barek S, B. Dhillon, A. H. Wittenberg, C. F. Crane, J. K. Hane, A. J. Foster, T. A. Van der Lee, J. Grimwood, A. Aerts, J. Antoniw, A. Bailey, B. Bluhm, J. Bowler, J. Bristow, A. van der Burgt, B. Canto-Canché, A. C. Churchill, L. Conde-Ferràez, H. J. Cools, P. M. Coutinho, M. Csukai, P. Dehal, P. De Wit, B. Donzelli, H. C. van de Geest, R. C. van Ham, K. E. Hammond-Kosack, B. Henrissat, A. Kilian, A. K. Kobayashi, E. Koopmann, Y. Kourmpetis, A. Kuzniar, E. Lindquist, V. Lombard, C. Maliepaard, N. Martins, R. Mehrabi, J. P. Nap, A. Ponomarenko, J. J. Rudd, A. Salamov, J. Schmutz, H. J. Schouten, H. Shapiro, I. Stergiopoulos, S. F. Torriani, H. Tu, R. P. de Vries, C. Waalwijk, S. B. Ware, A. Wiebenga, L. H. Zwiers, R. P. Oliver, I. V. Grigoriev and G. H. Kema 2011. Finished genome of the fungal wheat pathogen Mycosphaerella graminicola reveals dispensome structure, chromosome plasticity, and stealth pathogenesis. PLoS Genet. 7, e1002070.