Các phân nhóm biểu hiện hình thái khác biệt của tế bào trợ giúp T CD4+CXCR5+ trong máu tuần hoàn ở trẻ em mắc viêm mạch IgA cấp tính

BMC Immunology - Tập 17 - Trang 1-11 - 2016
Deying Liu1, Jinxiang Liu1, Jinghua Wang1, Congcong Liu1, Sirui Yang1, Yanfang Jiang2,3,4
1Department of Pediatric Rheumatology and Allergy, The First Affiliated Bethune Hospital of Jilin University, Changchun, China
2Genetic Diagnosis Center, The First Hospital of Jilin University, Changchun, China
3Key Laboratory of Zoonoses Research, Ministry of Education, The First Hospital of Jilin University, Changchun, China
4Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China

Tóm tắt

Các tế bào T trợ giúp nang (Tfh) trong máu tuần hoàn là một quần thể tế bào T trợ giúp CD4+ đa dạng, góp phần thúc đẩy các phản ứng miễn dịch gây bệnh trong các bệnh tự miễn. Trong nghiên cứu này, chúng tôi đã khảo sát tình trạng của các phân nhóm khác nhau của tế bào Tfh trong tuần hoàn ngoại biên và mối liên quan của chúng với các đặc điểm lâm sàng khác nhau của viêm mạch IgA (IgAV). Theo các biểu hiện kiểu hình của các phân tử khác nhau, chúng tôi tập trung vào sáu phân nhóm của tế bào Tfh: CD4+CXCR5+, CD4+CXCR5+ICOS+, CD4+CXCR5+ICOS+PD-1+, CD4+CXCR5+ICOShighPD-1high, CD4+CXCR5+ICOS−PD-1+ và CXCR5+CD45RA−IL-21+. Tần suất của sáu phân nhóm này và mức độ trung lưu của cytokine liên quan đến Tfh interleukin 21 (IL-21) đã được đo từ 27 bệnh nhân mắc IgAV và 15 đối tượng khỏe mạnh (HC) bằng phương pháp phân tích tế bào theo dòng và lưới hạt tế bào theo dòng. Những tần suất cao hơn đáng kể của tế bào Tfh CD4+CXCR5+, CD4+CXCR5+ICOS+, CD4+CXCR5+ICOS+PD-1+, CD4+CXCR5+ICOShighPD-1high và CXCR5+CD45RA−IL-21+, cũng như mức plasma IL-21 cao hơn, được phát hiện ở bệnh nhân IgAV so với HC. Mức độ của từng phân nhóm Tfh thay đổi theo các triệu chứng trình bày của IgAV, nhưng không khác biệt giữa bệnh nhân được điều trị hoặc không điều trị bằng glucocorticoid. Khi bệnh vào giai đoạn thuyên giảm sau điều trị, nồng độ trong máu của các tế bào Tfh CD4+CXCR5+, CD4+CXCR5+ICOS+, CD4+CXCR5+ICOS+PD-1+, CD4+CXCR5+ICOShighPD-1high và CXCR5+CD45RA−IL-21+, cũng như mức IL-21 trong plasma đã giảm. Trong số sáu phân nhóm tế bào Tfh, cả CD4+CXCR5+ICOS+ và CXCR5+CD45RA−IL-21+ đều có sự tương quan dương tính và đáng kể với nồng độ IgA huyết thanh và IL-21 huyết tương, nhưng chỉ CXCR5+CD45RA−IL-21+ mới có sự tương quan âm tính và đáng kể với nồng độ C4 huyết thanh. Tế bào Tfh có thể góp phần khác nhau vào sự phát triển của IgAV hoặc dự đoán tiến triển của bệnh. Những phát hiện này cung cấp những hiểu biết mới về cơ chế bệnh sinh của IgAV và có thể hỗ trợ phát triển điều trị nhắm vào các triệu chứng trình bày đặc hiệu cơ quan của IgAV.

Từ khóa

#Tế bào T trợ giúp #viêm mạch IgA #Tfh #cytokine IL-21 #bệnh tự miễn

Tài liệu tham khảo

Tizard EJ, Hamilton-Ayres MJ. Henoch Schonlein purpura. Arch Dis Child Educ Pract Ed. 2008;93:1–8. Audemard-Verger A, Pillebout E, Guillevin L, Thervet E, Terrier B. IgA vasculitis (Henoch-Shonlein purpura) in adults: Diagnostic and therapeutic aspects. Autoimmun Rev. 2015;14:579–85. Yang YH, Yu HH, Chiang BL. The diagnosis and classification of Henoch-Schonlein purpura: an updated review. Autoimmun Rev. 2014;13:355–8. Sohagia AB, Gunturu SG, Tong TR, Hertan HI. Henoch-schonlein purpura-a case report and review of the literature. Gastroenterol Res Pract. 2010;2010:597648. Piram M, Mahr A. Epidemiology of immunoglobulin A vasculitis (Henoch-Schonlein): current state of knowledge. Curr Opin Rheumatol. 2013;25:171–8. Johnson EF, Lehman JS, Wetter DA, Lohse CM, Tollefson MM. Henoch-Schonlein purpura and systemic disease in children: retrospective study of clinical findings, histopathology and direct immunofluorescence in 34 paediatric patients. Br J Dermatol. 2015;172:1358–63. Davin JC, Coppo R. Henoch-Schonlein purpura nephritis in children, Nature reviews. Nephrology. 2014;10:563–73. Davin JC. Henoch-Schonlein purpura nephritis: pathophysiology, treatment, and future strategy. Clinical J Am Soc Nephrol. 2011;6:679–89. Kiryluk K, Moldoveanu Z, Sanders JT, Eison TM, Suzuki H, Julian BA, Novak J, Gharavi AG, Wyatt RJ. Aberrant glycosylation of IgA1 is inherited in both pediatric IgA nephropathy and Henoch-Schonlein purpura nephritis. Kidney Int. 2011;80:79–87. Pan YX, Ye Q, Shao WX, Shang SQ, Mao JH, Zhang T, Shen HQ, Zhao N. Relationship between immune parameters and organ involvement in children with Henoch-Schonlein purpura. PLoS One. 2014;9:e115261. Jen HY, Chuang YH, Lin SC, Chiang BL, Yang YH. Increased serum interleukin-17 and peripheral Th17 cells in children with acute Henoch-Schonlein purpura. Pediatric Allergy Immunol. 2011;22:862–8. Ma CS, Deenick EK, Batten M, Tangye SG. The origins, function, and regulation of T follicular helper cells. J Exp Med. 2012;209:1241–53. Schmitt N, Bentebibel SE, Ueno H. Phenotype and functions of memory Tfh cells in human blood. Trends Immunol. 2014;35:436–42. M. Locci, C. Havenar-Daughton, E. Landais, J. Wu, M.A. Kroenke, C.L. Arlehamn, L.F. Su, R. Cubas, M.M. Davis, A. Sette, E.K. Haddad, A.V.I.P.C.P.I. International, P. Poignard, S. Crotty, Human circulating PD-1 + CXCR3-CXCR5+ memory Tfh cells are highly functional and correlate with broadly neutralizing HIV antibody responses, Immunity, 2013;39:758–9. Chen M, Guo Z, Ju W, Ryffel B, He X, Zheng SG. The development and function of follicular helper T cells in immune responses. Cell Mol Immunol. 2012;9:375–9. Shulman Z, Gitlin AD, Weinstein JS, Lainez B, Esplugues E, Flavell RA, Craft JE, Nussenzweig MC. Dynamic signaling by T follicular helper cells during germinal center B cell selection. Science. 2014;345:1058–62. Rasheed MA, Latner DR, Aubert RD, Gourley T, Spolski R, Davis CW, Langley WA, Ha SJ, Ye L, Sarkar S, Kalia V, Konieczny BT, Leonard WJ, Ahmed R. Interleukin-21 is a critical cytokine for the generation of virus-specific long-lived plasma cells. J Virol. 2013;87:7737–46. Bentebibel SE, Schmitt N, Banchereau J, Ueno H. Human tonsil B-cell lymphoma 6 (BCL6)-expressing CD4+ T-cell subset specialized for B-cell help outside germinal centers. Proc Natl Acad Sci U S A. 2011;108:E488–497. Simpson N, Gatenby PA, Wilson A, Malik S, Fulcher DA, Tangye SG, Manku H, Vyse TJ, Roncador G, Huttley GA, Goodnow CC, Vinuesa CG, Cook MC. Expansion of circulating T cells resembling follicular helper T cells is a fixed phenotype that identifies a subset of severe systemic lupus erythematosus. Arthritis Rheum. 2010;62:234–44. Morita R, Schmitt N, Bentebibel SE, Ranganathan R, Bourdery L, Zurawski G, Foucat E, Dullaers M, Oh S, Sabzghabaei N, Lavecchio EM, Punaro M, Pascual V, Banchereau J, Ueno H. Human blood CXCR5(+)CD4(+) T cells are counterparts of T follicular cells and contain specific subsets that differentially support antibody secretion. Immunity. 2011;34:108–21. Li XY, Wu ZB, Ding J, Zheng ZH, Li XY, Chen LN, Zhu P. Role of the frequency of blood CD4(+) CXCR5(+) CCR6(+) T cells in autoimmunity in patients with Sjogren’s syndrome. Biochem Biophys Res Commun. 2012;422:238–44. Xie J, Liu Y, Wang L, Ruan G, Yuan H, Fang H, Wu J, Cui D. Expansion of Circulating T Follicular Helper Cells in Children with Acute Henoch-Schonlein Purpura. J Immunol Res. 2015;2015:742535. Wang CM, Luo Y, Wang YC, Sheng GY. Roles of follicular helper T cells and follicular regulatory T cells in pathogenesis of Henoch-Schonlein purpura in children. Zhongguo Dang Dai Er Ke Za Zhi. 2015;17:1084–7. Ozen S, Pistorio A, Iusan SM, Bakkaloglu A, Herlin T, Brik R, Buoncompagni A, Lazar C, Bilge I, Uziel Y, Rigante D, Cantarini L, Hilario MO, Silva CA, Alegria M, Norambuena X, Belot A, Berkun Y, Estrella AI, Olivieri AN, Alpigiani MG, Rumba I, Sztajnbok F, Tambic-Bukovac L, Breda L, Al-Mayouf S, Mihaylova D, Chasnyk V, Sengler C, Klein-Gitelman M, Djeddi D, Nuno L, Pruunsild C, Brunner J, Kondi A, Pagava K, Pederzoli S, Martini A, Ruperto N, Paediatric O. Rheumatology International Trials, EULAR/PRINTO/PRES criteria for Henoch-Schonlein purpura, childhood polyarteritis nodosa, childhood Wegener granulomatosis and childhood Takayasu arteritis: Ankara 2008. Part II: Final classification criteria. Ann Rheum Dis. 2010;69:798–806. Park HJ, Kim DH, Lim SH, Kim WJ, Youn J, Choi YS, Choi JM. Insights into the role of follicular helper T cells in autoimmunity. Immune Netw. 2014;14:21–9. Zhang X, Ing S, Fraser A, Chen M, Khan O, Zakem J, Davis W, Quinet R. Follicular helper T cells: new insights into mechanisms of autoimmune diseases. Ochsner J. 2013;13:131–9. Breitfeld D, Ohl L, Kremmer E, Ellwart J, Sallusto F, Lipp M, Forster R. Follicular B helper T cells express CXC chemokine receptor 5, localize to B cell follicles, and support immunoglobulin production. J Exp Med. 2000;192:1545–52. Rasheed AU, Rahn HP, Sallusto F, Lipp M, Muller G. Follicular B helper T cell activity is confined to CXCR5(hi)ICOS(hi) CD4 T cells and is independent of CD57 expression. Eur J Immunol. 2006;36:1892–903. Good-Jacobson KL, Szumilas CG, Chen L, Sharpe AH, Tomayko MM, Shlomchik MJ. PD-1 regulates germinal center B cell survival and the formation and affinity of long-lived plasma cells. Nat Immunol. 2010;11:535–42. Akiba H, Takeda K, Kojima Y, Usui Y, Harada N, Yamazaki T, Ma J, Tezuka K, Yagita H, Okumura K. The role of ICOS in the CXCR5+ follicular B helper T cell maintenance in vivo. J Immunol. 2005;175:2340–8. Bossaller L, Burger J, Draeger R, Grimbacher B, Knoth R, Plebani A, Durandy A, Baumann U, Schlesier M, Welcher AA, Peter HH, Warnatz K. ICOS deficiency is associated with a severe reduction of CXCR5 + CD4 germinal center Th cells. J Immunol. 2006;177:4927–32. Bryant VL, Ma CS, Avery DT, Li Y, Good KL, Corcoran LM, de Waal Malefyt R, Tangye SG. Cytokine-mediated regulation of human B cell differentiation into Ig-secreting cells: predominant role of IL-21 produced by CXCR5+ T follicular helper cells. J Immunol. 2007;179:8180–90. Moens L, Tangye SG. Cytokine-Mediated Regulation of Plasma Cell Generation: IL-21 Takes Center Stage. Front Immunol. 2014;5:65. Zhang Y, Jiang Y, Wang Y, Liu H, Shen Y, Yuan Z, Hu Y, Xu Y, Cao J. Higher Frequency of Circulating PD-1(high) CXCR5(+)CD4(+) Tfh Cells in Patients with Chronic Schistosomiasis. Int J Biol Sci. 2015;11:1049–55. Riella LV, Paterson AM, Sharpe AH, Chandraker A. Role of the PD-1 pathway in the immune response. Am J Trans. 2012;12:2575–87. J. Kiyasu, H. Miyoshi, A. Hirata, F. Arakawa, A. Ichikawa, D. Niino, Y. Sugita, Y. Yufu, I. Choi, a. Abe, N. Uike, K. Nagafuji, T. Okamura, K. Akashi, R. Takayanagi, M. Shiratsuchi, a.K. Ohshima. Expression of programmed cell death ligand 1 is associated with poor overall survival in patients with diffuse large B-cell lymphoma, Blood, 2015;126:2193–01. Wei F, Zhong S, Ma Z, Kong H, Medvec A, Ahme R, Freeman GJ, Krogsgaard M, Riley JL. Strength of PD-1 signaling differentially affects T-cell effector functions. Proc Natl Acad Sci U S A. 2013;110:E2480–9. D. Perez-Mazliah, D.H. Ng, A.P. Freitas do Rosario, S. McLaughlin, B. Mastelic-Gavillet, J. Sodenkamp, G. Kushinga, J. Langhorne, Disruption of IL-21 signaling affects T cell-B cell interactions and abrogates protective humoral immunity to malaria, PLoS pathogens, 2015;11:e1004715. Li Q, Liu Z, Dang E, Jin L, He Z, Yang L, Shi X, Wang G. Follicular Helper T Cells (Tfh) and IL-21 Involvement in the Pathogenesis of Bullous Pemphigoid. PLoS One. 2013;8:e68145. Sage PT, Francisco LM, Carman CV, Sharpe AH. The receptor PD-1 controls follicular regulatory T cells in the lymph nodes and blood. Nat Immunol. 2013;14:152–61. Yoshizaki A, Miyagaki T, DiLillo DJ, Matsushita T, Horikawa M, Kountikov EI, Spolski R, Poe JC, Leonard WJ, Tedder TF. Regulatory B cells control T-cell autoimmunity through IL-21-dependent cognate interactions. Nature. 2012;491:264–8. Liu SM, King C. IL-21-producing Th cells in immunity and autoimmunity. J Immunol. 2013;191:3501–6.