Distance and intersection number in the curve graph of a surface
Tóm tắt
Từ khóa
Tài liệu tham khảo
Aougab, T., Taylor, S.J.: Small intersection numbers in the curve graph. Bull. Lond. Math. Soc. 46(5), 989–1002 (2014). arXiv:1310.4711
Birman, J., Menasco, W.: The curve complex has dead ends. Geom. Dedic. 177, 71–74 (2015). arXiv:1210.6698
Birman, J., Margalit, D., Menasco, W.: Efficient geodesics and an effective algorithm for distance in the complex of curves. Math. Ann. 366(1), 1253–1279 (2016). arXiv:1408.4133
Fathi, A., Laudenbach, F., Poénaru, V.: Travaux de Thurston sur les surfaces. Société Mathématique de France, Paris (1991) (séminaire Orsay, reprint of Travaux de Thurston sur les surfaces, Society Mathematical France, Paris, MR0568308, 82m:57003, astérisque no. 66–67 (1991), 1979)
Glenn, P., Menasco, W., Morrell, K., Morse, M.: MICC: a tool for computing short distances in the curve complex. J. Symb. Comput. 78, 115–132 (2017). arXiv:1408.4134
Glenn, P., Morse, M.: MICC: Metric in the Curve Complex. Software package and software tutorial are posted for download at http://micc.github.io
Hempel, J.: 3-Manifolds as viewed from the curve complex. Topology 40, 631–657 (2001). arXiv:math/9712220
Leasure, J.P.: Geodesics in the complex of curves of a surface. ProQuest LLC, Ann Arbor. Thesis (Ph.D.), The University of Texas, Austin (2002)
Masur, H., Minsky, Y.: Geometry of the complex of curves I: hyperbolicity. Invent. Math. 138(1), 103–149 (1999). arXiv:math/9804098
Masur, H.A., Minsky, Y.: Geometry of the complex of curves II: Hierarchical structure. Geom. Funct. Anal. 10(4), 902–974 (2000). arXiv:math/9807150
Przytycki, P., Sisto, A.: A note on acylindrical hyperbolicity of mapping class groups. In: Fujiwara, K., Kojima, S., Ohshika, K. (eds.) Hyperbolic Geometry and Geometric Group Theory, Number 73 in Advanced Studies in Pure Mathematics, pp. 255–264. Mathematical Society of Japan (2017). arXiv:1502.02176
Rasmussen, A.: Uniform hyperbolicity of the graphs of nonseparating curves via bicorn curves. Preprint: arXiv:1707.08283
Schleimer, S.: Notes on the complex of curves. http://homepages.warwick.ac.uk/masgar/Maths/notes.pdf (2006)