Distance and direction, but not light cues, support response reversal learning
Tóm tắt
Across three experiments, we examined the cuing properties of metric (distance and direction) and nonmetric (lighting) cues in different tasks. In Experiment 1, rats were trained on a response problem in a T-maze, followed by four reversals. Rats that experienced a change in maze orientation (Direction group) or a change in the length of the start arm (Distance group) across reversals showed facilitation of reversal learning relative to a group that experienced changes in room lighting across reversals. In Experiment 2, rats learned a discrimination task more readily when distance or direction cues were used than when light cues were used as the discriminative stimuli. In Experiment 3, performance on a go/no-go task was equivalent using both direction and lighting cues. The successful use of both metric and nonmetric cues in the go/no-go task indicates that rats are sensitive to both types of cues and that the usefulness of different cues is dependent on the nature of the task.
Tài liệu tham khảo
Bahar, A. S., Shirvalkar, P. R., & Shapiro, M. L. (2011). Memory-guided learning: CA1 and CA3 neuronal ensembles differentially encode the commonalities and differences between situations. Journal of Neuroscience, 31, 12270–12281.
Bouton, M. E., & Brooks, D. C. (1993). Time and context effects on performance in a Pavlovian discrimination reversal. Journal of Experimental Psychology: Animal Behavior Processes, 19, 165–179.
Bouton, M. E., & Moody, E. W. (2004). Memory processes in classical conditioning. Neuroscience and Biobehavioral Reviews, 28, 663–674.
Cahill, S. P. A., Fifield, K. E., Thorpe, C. M., Martin, G. M., & Skinner, D. M. (2015). Mice use start point orientation to solve spatial problems in water T-maze. Animal Cognition, 18, 195–203.
Calton, J. L., Stackman, R. W., Goodridge, J. P., Archey, W. B., Dudchenko, P. A., & Taube, J. S. (2003). Hippocampal place cell instability after lesions of the head direction cell network. Journal of Neuroscience, 23, 9719–9731.
Capretta, P. J. (1961). An experimental modification of food preference in chickens. Journal of Comparative and Physiological Psychology, 54, 238–242.
Cheng, K. (2005). Context cues eliminate retroactive interference effects in honeybees Apis mellifera. Journal of Experimental Biology, 208, 1019–1024.
Cheng, K., & Wignall, A. (2006). Honeybees (Apis mellifera) holding on to memories: Response competition causes retroactive interference effects. Animal Cognition, 9, 141–150.
Chiszar, D. A., & Spear, N. E. (1969). Stimulus change, reversal learning and retention in the rat. Journal of Comparative and Physiological Psychology, 69, 190–195.
Chittka, L. (1998). Sensorimotor learning in bumblebees: Long-term retention and reversal training. Journal of Experimental Biology, 201, 515–524.
Church, R. M., & Deluty, M. Z. (1977). Bisection of temporal intervals. Journal of Experimental Psychology: Animal Behavior Processes, 3, 216–228.
Colborn, M., Ahmad-Annuar, A., Fauria, K., & Collett, T. (1999). Contextual modulation of visuomotor associations in bumble-bees (Bombus terrestris). Proceedings of the Royal Society of London, 266, 2413–2418.
Colgin, L., Leutgeb, S., Jezek, K., Leutgeb, J., Moser, E., McNaughton, B., & Moser, M. (2010). Attractor-map versus autoassociation based attractor dynamics in the hippocampal network. Journal of Neurophysiology, 104, 35–50.
Cowles, J. T., & Finan, J. L. (1941). An improved method for establishing temporal discrimination in white rats. Journal of Psychology: Interdisciplinary and Applied, 11, 335–342.
Eschenko, O., & Mizumori, S. J. (2007). Memory influences on hippocampal and striatal neural codes: Effects of a shift between task rules. Neurobiology of Learning and Memory, 87, 495–509.
Ferbinteanu, J., Shirvalkar, P., & Shapiro, M. L. (2011). Memory modulates journey-dependent coding in the rat hippocampus. Journal of Neuroscience, 31, 9135–9146.
Foree, D. D., & LoLordo, V. M. (1973). Attention in the pigeon: Differential effects of food-getting versus shock-avoidance procedures. Journal of Comparative and Physiological Psychology, 85, 551–558.
Frank, L. M., Brown, E. N., & Wilson, M. (2000). Trajectory encoding in the hippocampus and entorhinal cortex. Neuron, 27, 169–178.
Garcia, J., McGowan, B. K., Ervin, F. R., & Koelling, R. A. (1968). Cues: Their relative effectiveness as a function of reinforce. Science, 160, 794–795.
Garcia, J., & Koelling, R. A. (1966). Relation of cue to consequence in avoidance learning. Psychonomic Science, 4, 123–124.
Gillette, K., Martin, G. M., & Bellingham, W. P. (1980). Differential use of food and water cues in the formation of conditioned aversions by domestic chickens (Gallus gallus). Journal of Experimental Psychology: Animal Behavior Processes, 6, 99–111.
Goodrich-Hunsaker, N. J., Hunsaker, M. R., & Kesner, R. P. (2008). The interactions and dissociations of the dorsal hippocampus subregions: How the dentate gyrus, CA3, and CA1 process spatial information. Behavioral Neuroscience, 122, 16–26.
Griffin, A. L., Eichenbaum, H., & Hasselmo, M. E. (2007). Spatial representations of hippocampal CA1 neurons are modulated by behavioral context in a hippocampus-dependent memory task. Journal of Neuroscience, 27, 2416–2423.
Guzowski, J. F., McNaughton, B. L., Barnes, C. A., & Worley, P. F. (1999). Environment-specific expression of the immediate-early gene Arc in hippocampal neuronal ensembles. Nature Neuroscience, 2, 1120–1124.
Hafting, T., Fyhn, M., Molden, S., Moser, M.-B., & Moser, E. I. (2005). Microstructure of a spatial map in the entorhinal cortex. Nature, 436, 801–806.
Hamilton, D. A., Akers, K. G., Weisand, M. P., & Sutherland, R. J. (2007). How do room and apparatus cues control navigation in the Morris water task? Evidence for distinct contributions to a movement vector. Journal of Experimental Psychology: Animal Behavior Processes, 33, 100–114.
Hartley, T., Trinkler, I., & Burgess, N. (2004). Geometric determinants of human spatial memory. Cognition, 94, 39–75.
Jeffery, K. J. (2007). Integration of sensory inputs to place cells: What, where, why, and how? Hippocampus, 17, 775–785.
Knierim, J. J., Kudrimoti, H. S., & McNaughton, B. L. (1995). Place cells, head direction cells, and the learning of landmark stability. Journal of Neuroscience, 15, 1648–1659.
Leutgeb, S., Leutgeb, J. K., Barnes, C. A., Moser, E. I., McNaughton, B. L., & Moser, M-B. (2005). Independent codes for spatial and episodic memory in the hippocampus. Science, 309, 619–623.
Markus, E. J., Qin, Y. L., Leonard, B., Skaggs, W. E., McNaughton, B. L., & Barnes, C. A. (1995). Interactions between location and task affect the spatial and directional firing of hippocampal neurons. Journal of Neuroscience, 15, 7079–7094.
McDonald, R. J., King, A. L., & Hong, N. (2001). Context-specific interference on reversal learning of a stimulus response habit. Behavioral Brain Research, 121, 149–165.
McNamara, T. P. (2003). How are the locations of objects in the environment represented in memory? In C. Freksa, W. Braruer, C. Habel, & K. Wender (Eds.), Spatial cognition III: Routes and navigation, human memory and learning, spatial representation and spatial learning (Lecture Notes in Computer Science Vol. 2685, pp. 174–191). Berlin, Germany: Springer.
McNaughton, B. L., Battaglia, F. P., Jensen, O., Moser, E. I., & Moser, M.-B. (2006). Path-integration and the neural basis of the “cognitive map”. Nature Reviews Neuroscience, 7, 663–678.
Means, L. W., Arolfo, M. P., Ginn, S. R., Pence, J. D., & Watson, N. P. (2000). Rats more readily acquire a time-of-day go no-go discrimination than time of day discrimination. Behavioral Processes, 52, 11–20.
Moita, M. A., Rosis, S., Zhou, Y., LeDoux, J. E., & Blair, H. T. (2004). Putting fear in its place: Remapping of hippocampal place cells during fear conditioning. Journal of Neuroscience, 24, 7015–7023.
Muller, R. U., & Kubie, J. L. (1987). The effects of changes in the environment on the spatial firing of hippocampal complex-spike cells. Journal of Neuroscience, 7, 1951–1968.
O’Keefe, J. (2007). Hippocampal neurophysiology in the behaving animal. In P. Anderson, R. Morris, D. Amaral, T. Bliss, & J. O’Keefe (Eds.), The hippocampus book (pp. 475–548). New York, NY: Oxford University Press.
O’Keefe, J., & Nadel, L. (1978). The hippocampus as a cognitive map. Retrieved from www.cognitivemap.net/HCMpdf/HCMComplete.pdf
Pagani, J. H., Brown, K. L., & Stanton, M. E. (2005). Contextual modulation of spatial discrimination reversal developing rats. Developmental Psychobiology, 46, 36–46
Peckford, G., McRae, S. M., Thorpe, C. M., Martin, G. M., & Skinner, D. M. (2013). Rats’ orientation at the start point is important for spatial learning in a water T-maze. Learning and Motivation, 44, 1–15.
Restle, F. (1958). Toward a quantitative description of learning set data. Psychological Review, 65, 77–91.
Sadtler, P. T., Quick, K. M., Golub, M. D., Chase, S. M., Ryu, S. I., Tyler-Kabara, E. C., ... Batista, A. P. (2014). Neural constraints on learning. Nature, 512, 423–426.
Schmidt, B., Satvat, E., Argraves, M., Markus, E. J., & Marrone, D. F. (2012). Cognitive demands induce selective hippocampal reorganization: Arc expression in a place and response task. Hippocampus, 22, 2114–2126.
Seligman, M. E. P. (1970). On the generality of the laws of learning. Psychological Review, 77, 406–418.
Skinner, D. M., Etchegary, C. M., Ekert-Maret, E. C., Baker, C. J., Harley, C. W., Evans, J. H., & Martin, G. M. (2003). An analysis of response, direction, and place learning on an open field and T-maze. Journal of Experimental Psychology: Animal Behavior Processes, 29, 3–13.
Skinner, D. M., Martin, G. M., Wright, S. L., Tomlin, J., Odintsova, I. V., Thorpe, C. M., ... Marrone, D. F. (2014). Hippocampal spatial mapping and the acquisition of competing responses. Hippocampus, 24, 396–402.
Smith, D. M., & Mizumori, S. J. Y. (2006). Hippocampal place cells, context and episodic memory. Hippocampus, 16, 716–729.
Spetch, M. L., Cheng, K., & MacDonald, S. E. (1996). Learning the configuration of a landmark array: I. Touch-screen studies with pigeons and humans. Journal of Comparative Psychology, 110, 55–68.
Stubbs, A. (1968). The discrimination of stimulus duration by pigeons. Journal of the Experimental Analysis of Behavior, 11, 223–238.
Thomas, D. R., McKelvie, A. R., & Mah, W. L. (1985). Context as a conditional cue in operant discrimination reversal learning. Journal of Experimental Psychology: Animal Behavior Processes, 11, 317–330.
Thorpe, C. M., Bates, M. E., & Wilkie, D. M. (2003). Rats have trouble associating all three parts of the time-place-event memory code. Behavioral Processes, 63, 95–110.
Walsh, S. J., Skinner, D. M., & Martin, G. M. (2007). Location serves as a conditional cue when harp seals (Pagophilus groenlandicus) solve object discrimination reversal problems. Canadian Journal of Experimental Psychology, 61, 44–53. doi:https://doi.org/10.1037/cjep2007005
Whishaw, I. Q., & Gorny, B. (1999). Path integration absent in scent-tracking fimbria-fornix rats: Evidence for hippocampal involvement in “sense of direction” and “sense of distance” using self-movement cues. Journal of Neuroscience, 19, 4662–4673.
Whyte, J. T., Martin, G. M., & Skinner, D. M. (2009). An assessment of response, direction and place learning by rats in a water T-maze. Learning and Motivation, 40, 376–385
Wood, E. R., Dudchenko, P. A., Robitsek, R. J., & Eichenbaum, H. (2000). Hippocampal neurons encode information about different types of memory episodes occurring in the same location. Neuron, 27, 623– 633.
Wright, S. L., Williams, D., Evans, J. H., Skinner, D. M., & Martin, G. M. (2009). The contribution of spatial cues to memory: Direction, but not cue, changes support response reversal learning. Journal of Experimental Psychology: Animal Behavior Processes, 35, 177–185.