Dissolved organic matter (DOM) enhances the competitiveness of weak exoelectrogens in a soil electroactive biofilm
Tóm tắt
Từ khóa
Tài liệu tham khảo
Aeschbacher M, Vergari D, Schwarzenbach RP, Sander M (2011) Electrochemical analysis of proton and electron transfer equilibria of the reducible moieties in humic acids. Environ Sci Technol 45:8385–8394
Aiyer K, Doyle LE (2022) Capturing the signal of weak electricigens: a worthy Endeavour. Trends Biotechnol 22
Aiyer K, Doyle LE (2023) Extracellular electron transfer of weak electricigens in the presence of a competing electron acceptor. J Electrochem Soc 170:055501
Aiyer K, Mukherjee D, Doyle LE (2023) A weak electricigen-based bioelectrochemical sensor for real-time monitoring of chemical pollutants in water. ACS Appl Bio Mater 6(10):4105–4110
Benedek T, Táncsics A, Szabó I, Farkas M, Szoboszlay S, Fábián K, Maróti G, Kriszt B (2016) Polyphasic analysis of an Azoarcus-Leptothrix-dominated bacterial biofilm developed on stainless steel surface in a gasoline-contaminated hypoxic groundwater. Environ Sci Pollut R 23:9019–9035
Bond DR, Strycharz-Glaven SM, Tender LM, Torres CI (2012) On electron transport through Geobacter biofilms. ChemSusChem 5:1099–1105
Brose DA, James BR (2010) Oxidation−reduction transformations of chromium in aerobic soils and the role of electron-shuttling quinones. Environ Sci Technol 44:9438–9444
da Silva Neto JF, Lourenço RF, Marques MV (2013) Global transcriptional response of Caulobacter crescentus to iron availability. BMC Genomics 14:1–16
Doyle LE, Marsili E (2018) Weak electricigens: a new avenue for bioelectrochemical research. Bioresour Technol 258:354–364
Eghtesadi N, Olaifa K, Perna FM, Capriati V, Trotta M, Ajunwa O, Marsili E (2022) Electroactivity of weak electricigen Bacillus subtilis biofilms in solution containing deep eutectic solvent components. Bioelectrochemistry 147:108207
Fimmen RL, Cory RM, Chin YP, Trouts TD, McKnight DM (2007) Probing the oxidation-reduction properties of terrestrially and microbially derived dissolved organic matter. Geochim Cosmochim Acta 71:3003–3015
Flemming HC, Wingender J, Szewzyk U, Steinberg P, Rice SA, Kjelleberg S (2016) Biofilms: an emergent form of bacterial life. Nat Rev Microbiol 14:563–575
Harwood CR, Pohl S, Smith W, Wipat A (2013) Bacillus subtilis: model gram-positive synthetic biology chassis. Method Microbiol 40:87–117
Hobbie SN, Li X, Basen M, Stingl U, Brune A (2012) Humic substance-mediated Fe(III) reduction by a fermenting Bacillus strain from the alkaline gut of a humus-feeding scarab beetle larva. Syst Appl Microbiol 35:226–232
Kumar A, Hsu LH-H, Kavanagh P, Barrière F, Lens PNL, Lapinsonnière L, Lienhard VJH, Schröder U, Jiang X, Leech D (2017) The ins and outs of microorganism–electrode electron transfer reactions. Nat Rev Chem 1:24
Light SH, Méheust R, Ferrell JL, Cho J, Deng D, Agostoni M, Iavarone AT, Banfield JF, D’Orazio SEF, Portnoy DA (2019) Extracellular electron transfer powers flavinylated extracellular reductases in gram-positive bacteria. Proc Natl Acad Sci USA 116:26892–26899
Light SH, Su L, Rivera-Lugo R, Cornejo JA, Louie A, Iavarone AT, Ajo-Franklin CM, Portnoy DA (2018) A flavin-based extracellular electron transfer mechanism in diverse gram-positive bacteria. Nature 562:140–157
Liu W, Wu Y, Liu T, Li F, Dong H, Jing M (2019) Influence of incubation temperature on 9,10-anthraquinone-2-sulfonate (AQS)-mediated extracellular electron transfer. Front Microbiol 10:1–10
Logan BE, Hamelers B, Rozendal R, Schroder U, Keller J, Freguia S, Aelterman P, Verstraete W, Rabaey K (2006) Microbial fuel cells: methodology and technology. Environ Sci Technol 40:5181–5192
Logan BE, Rossi R, Ragab A, Saikaly PE (2019) Electroactive microorganisms in bioelectrochemical systems. Nat Rev Microbiol 17:307–319
Lovley DR, Coates JD, Blunt-Harris EL, Phillips EJP, Woodward JC (1996) Humic substances as electron acceptors for microbial respiration. Nature 382:445–448
Lovley DR, Fraga JL, Blunt-Harris EL, Hayes LA, Phillips EJP, Coates JD (1998) Humic substances as a mediator for microbially catalyzed metal reduction. Acta Hydrochim Hydrobiol 26:152–157
Lovley DR, Holmes DE (2022) Electromicrobiology: the ecophysiology of phylogenetically diverse electroactive microorganisms. Nat Rev Microbiol 20:5–19
Lovley DR, Phillips EJP, Lonergan DJ, Widma PK (1995) Fe(III) and S0 reduction by Pelobacter carbinolicus. Appl Environ Microbiol 61:2132–2138
Lovley DR, Stolz JF, Nord GL, Phillips EJP (1987) Anaerobic production of magnetite by a dissimilatory iron-reducing microorganism. Nature 330:252–254
Luan F, Gorski CA, Burgos WD (2014) Thermodynamic controls on the microbial reduction of iron-bearing nontronite and uranium. Environ Sci Technol 48:2750–2758
Margesin R, Schinner F (2005) Determination of chemical and physical soil properties. Soil Biol 5:978-3-540-28904–3
Marsili E, Baron DB, Shikhare ID, Coursolle D, Gralnick JA, Bond DR (2008) Shewanella secretes flavins that mediate extracellular electron transfer. Proc Natl Acad Sci USA 105:3968–3973
Marsili E, Rollefson JB, Baron DB, Hozalski RM, Bond DR (2008) Microbial biofilm voltammetry: direct electrochemical characterization of catalytic electrode-attached biofilms. Appl Environ Microbiol 74:7329–7337
Mosher JJ, Phelps TJ, Podar M, Hurt RA, Campbell JH, Drake MM, Moberly JG, Schadt CW, Brown SD, Hazen TC, Arkin AP, Palumbo AV, Faybishenko BA, Elias DA (2012) Microbial community succession during lactate amendment and electron acceptor limitation reveals a predominance of metal-reducing Pelosinus spp. Appl Environ Microbiol 78:2082–2091
Myers CR, Nealson KH (1988) Bacterial manganese reduction and growth with manganese oxide as the sole electron acceptor. Science 240:1319–1321
Ohtsuka T, Yamaguchi N, Makino T, Sakurai K, Kimura K, Kudo K, Homma E, Dong DT, Amachi S (2013) Arsenic dissolution from Japanese paddy soil by a dissimilatory arsenate-reducing bacterium Geobacter sp. OR-1. Environ Sci Technol 47:6263–6271
Qin B, Wu Y, Wang G, Chen X, Luo X, Li F, Liu T (2020) Physicochemical constraints on the in-situ deposited phenoxazine mediated electron shuttling process. Electrochim Acta 339:135934
Roden EE, Kappler A, Bauer I, Jiang J, Paul A, Stoesser R, Konishi H, Xu H (2010) Extracellular electron transfer through microbial reduction of solid-phase humic substances. Nat Geosci 3:417–421
Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, Amin N, Schwikowski B, Ideker T (2003) Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res 13:2498–2504
Shi L, Dong H, Reguera G, Beyenal H, Lu A, Liu J, Yu H-Q, Fredrickson JK (2016) Extracellular electron transfer mechanisms between microorganisms and minerals. Nat Rev Microbiol 14:651–662
Stanley W, Southam G (2018) The effect of gram-positive (Desulfosporosinus orientis) and gram-negative (Desulfovibrio desulfuricans) sulfate-reducing bacteria on iron sulfide mineral precipitation. Can J Microbiol 64:629–637
Suzuki Y, Kelly SD, Kemner KM, Banfield JF (2004) Enzymatic U(VI) reduction by Desulfosporosinus species. Radiochim Acta 92:11–16
Wang H, Jing X, Feng K, Tremblay P, Wang J, Liu X, Zhou S (2024) In situ tuning the structure of Geobacter biofilm for bioelectricity enhancement. Environ Sci Technol Lett 11:106–113
Wu S, Xiao Y, Wang L, Zheng Y, Chang K, Zheng Z, Yang Z, Varcoe JR, Zhao F (2014) Extracellular electron transfer mediated by flavins in gram-positive Bacillus sp. WS-XY1 and yeast Pichia stipitis. Electrochim Acta 146:564–567
Wu Y, Li F, Liu T, Han R, Luo X (2016) pH dependence of quinone-mediated extracellular electron transfer in a bioelectrochemical system. Electrochim Acta 213:408–415
Wu Y, Liu T, Li X, Li F (2014) Exogenous electron shuttle-mediated extracellular electron transfer of Shewanella putrefaciens 200: electrochemical parameters and thermodynamics. Environ Sci Technol 48:9306–9314
Wu Y, Luo X, Qin B, Li F, Häggblom MM, Liu T (2020) Enhanced current production by exogenous electron mediators via synergy of promoting biofilm formation and the electron shuttling process. Environ Sci Technol 54:7217–7225
Wu Y, Zhu X, Wang X, Lin Z, Reinfelder JR, Li F, Liu T (2023) A new Electron shuttling pathway mediated by lipophilic Phenoxazine via the interaction with periplasmic and inner membrane proteins of Shewanella oneidensis MR-1. Environ Sci Technol 57:2636–2646
Yang P, Jiang T, Cong Z, Liu G, Guo Y, Liu Y, Shi J, Hu L, Yin Y, Cai Y, Jiang G (2021) Loss and increase of the electron exchange capacity of natural organic matter during its reduction and reoxidation: the role of quinone and nonquinone moieties. Environ Sci Technol 56:6744–6753
Yee MO, Deutzmann J, Spormann A, Rotaru AE (2020) Cultivating electroactive microbes-from field to bench. Nanotechnology 31:174003
Yuan Y, Cai X, Wang Y, Zhou S (2017) Electron transfer at microbe-humic substances interfaces: electrochemical, microscopic and bacterial community characterizations. Chem Geol 456:1–9
Zhang H, Weber EJ (2009) Elucidating the role of electron shuttles in reductive transformations in anaerobic sediments. Environ Sci Technol 43:1042–1048
Zhang L, Zeng Q, Liu X, Chen P, Guo X, Ma LZ, Dong H, Huang Y (2019) Iron reduction by diverse actinobacteria under oxic and pH-neutral conditions and the formation of secondary minerals. Chem Geol 525:390–399
Zhang X, Ma F, Szewzyk U (2016) Draft genome sequence of a potential nitrate-dependent Fe(II)-oxidizing bacterium, Aquabacterium parvum B6. Genome Announc 4:7–8
Zhao F, Slade RCT, Varcoe JR (2009) Techniques for the study and development of microbial fuel cells: an electrochemical perspective. Chem Soc Rev 38:1926–1939
Zhu X, Dou F, Long M, Wang X, Liu W, Li F, Liu T, Wu Y (2023) Electron shuttle-dependent biofilm formation and biocurrent generation: concentration effects and mechanistic insights. Front Microbiol 14:1070800