Động lực học tiêu tán trong phân phối khóa lượng tử

L. Salatino1, L. Mariani1, C. Attanasio1, S. Pagano2, Roberta Citro1
1Department of Physics “E. R. Caianiello”, University of Salerno, via Giovanni Paolo II 132, 84014, Fisciano, SA, Italy
2CNR – SPIN, University of Salerno, via Giovanni Paolo II 132, 84014, Fisciano, SA, Italy

Tóm tắt

Tóm tắtSử dụng nền tảng IBM Quantum Experience, chúng tôi mô phỏng động lực học tiêu tán trong giao thức phân phối khóa lượng tử BB84. Chúng tôi áp dụng mô hình Jaynes–Cummings để mô phỏng sự suy giảm trong sợi quang trong quá trình truyền thông tin và tính toán tỷ lệ lỗi bit lượng tử (QBER). Kết quả của QBER như một hàm của khoảng cách cho thấy sự đồng thuận tốt với dữ liệu thực nghiệm khi hệ thống ở chế độ Markov.

Từ khóa


Tài liệu tham khảo

B. Korzh et al., Provably secure and practical quantum key distribution over 307 km of optical fibre. Nat. Photon. 9, 163 (2015)

B. Fröhlich et al., Long-distance quantum key distribution secure against coherent attacks. Optica 4, 163 (2017)

S.K. Liao et al., Long-distance free-space quantum key distribution in daylight towards inter-satellite communication. Nat. Photon. 11, 509 (2017)

J.T. Barreiro et al., An open-system quantum simulator with trapped ions. Nature 470, 486–491 (2011)

F. Verstraete et al., Quantum computation and quantum-state engineering driven by dissipation. Nat. Phys. 5, 633–636 (2009)

J.F. Poyatos et al., Quantum reservoir engineering with laser cooled trapped ions. Phys. Rev. Lett. 77, 4728–4731 (1996)

J.T. Barreiro et al., Experimental multiparticle entanglement dynamics induced by decoherence. Nat. Phys. 6, 943–946 (2010)

H. Krauter et al., Entanglement generated by dissipation and steady state entanglement of two macroscopic objects. Phys. Rev. Lett. 107, 080503 (2011)

M.P. Almeida et al., Environment-induced sudden death of entanglement. Science 316, 579–582 (2007)

T. Yu, J.H. Eberly, Sudden death of entanglement. Science 323, 598–601 (2009)

L. Mazzola et al., Sudden transition between classical and quantum decoherence. Phys. Rev. Lett. 104, 200401 (2010)

J.S. Xu et al., Experimental investigation of classical and quantum correlations under decoherence. Nat. Commun. 1, 7 (2010)

C. H. Bennett, G. Brassard. Quantum Cryptography: Public Key Distribution and Coin Tossing. Proc. in IEEE International Conference on Computers, Systems, and Signal Processing, p. 175 (1984)

N. Gisin et al., Quantum cryptography. Rev. Mod. Phys. 74, 145 (2002)

V. Scarani et al., The security of practical quantum key distribution. Rev. Mod. Phys. 81, 1301 (2009)

C. Elliott et al., Current status of the DARPA Quantum Network. Proc. SPIE 5815, 138 (2005)

M. Peev et al., The SECOQC quantum key distribution network in Vienna. New J. Phys. 11, 075001 (2009)

E.O. Kiktenko et al., Demonstration of a quantum key distribution network in urban fibre-optic communication lines. Quantum Electron. 47, 798 (2017)

P.K. Tysowski et al., The engineering of a scalable multi-site communications system utilizing quantum key distribution (QKD). Quantum Sci. and Technol. 3, 024001 (2018)

H.P. Breuer et al., The theory of open quantum systems (Oxford University Press, Oxford, 2007)

U. Weiss, Quantum dissipative systems (World Scientific, 2011)

Á. Rivas, S.F. Huelga, Open quantum systems (Springer, Berlin, 2012)

V. Gorini, Completely positive dynamical semigroups of n-level systems. J. Math. Phys. 17, 821 (1976)

G. Lindblad, On the generators of quantum dynamical semigroups. Commun. Math. Phys. 48, 119–130 (1976)

M.J.W. Hall et al., Canonical form of master equations and characterization of non-Markovianity. Phys. Rev. A 89, 042120 (2014)

N. Megier et al., Eternal non-Markovianity: From random unitary to Markov chain realisations. Sci. Rep. 7, 6379 (2017)

D. Chruściński et al., Detecting non-Markovianity of quantum evolution via spectra of dynamical maps. Phys. Rev. Lett. 118, 080404 (2017)

E.T. Jaynes, F.W. Cummings, Comparison of quantum and semiclassical radiation theories with application to the beam maser. Proc. IEEE 51, 89 (1963)

J.H. Eberly et al., Periodic spontaneous collapse and revival in a simple quantum model. Phys. Rev. Lett. 44, 1323 (1980)

J.M. Raimond et al., Manipulating quantum entanglement with atoms and photons in a cavity. Rev. Mod. Phys. 73, 565 (2001)

H. Walther et al., Cavity quantum electrodynamics. Rep. Prog. Phys. 69, 1325 (2006)

D. Leibfried et al., Quantum dynamics of single trapped ions. Rev. Mod. Phys. 75, 281 (2003)

J. Clarke, F.K. Wilhelm, Superconducting quantum bits. Nature 453, 1031 (2008)

G. García-Pérez et al. IBM Q Experience as a versatile experimental testbed for simulating open quantum systems. Nature (2020).

M.A. Nielsen et al., Quantum computation and quantum information (Cambridge University Press, Cambridge, 2010)

P.L. Knight, L. Allen, Rotating-wave approximation in coherent interactions. Phys. Rev. A 7(368), 370 (1973)

A.R. Dixon et al., Gigahertz decoy quantum key distribution with 1 Mbit/s secure key rate. Opt. Express 16(23), 18790 (2008)

K. Takemoto et al., Quantum key distribution over 120km using ultrahigh purity single-photon source and superconducting single-photon detectors. Sci. Rep. 5, 14383 (2015)

K. Takemoto et al., Transmission experiment of quantum keys over 50 km using high-performance quantum-dot single-photon source at 1.5 µM wavelength. Appl. Phys. Express 3, 092802 (2010)

B.H. Liu et al., Experimental control of the transition from Markovian to non-Markovian dynamics of open quantum systems. Nature Phys. 7, 931–934 (2011)