Dissipation measurements using temperature microstructure from an underwater glider

Methods in Oceanography - Tập 10 - Trang 44-69 - 2014
Algot K. Peterson1, Ilker Fer1
1Geophysical Institute, University of Bergen, Allégaten 70, 5007 Bergen, Norway

Tài liệu tham khảo

Batchelor, 1959, Small-scale variation of convected quantities like temperature in turbulent fluid. Part 1: general discussion and the case of small conductivity, J. Fluid Mech., 5, 113, 10.1017/S002211205900009X Beaird, 2012, Dissipation of turbulent kinetic energy inferred from seagliders: an application to the eastern Nordic Seas overflows, J. Phys. Oceanogr., 42, 2268, 10.1175/JPO-D-12-094.1 Bogucki, 2012, Experimental evidence of the Kraichnan scalar spectrum at high Reynolds number, J. Phys. Oceanogr., 42, 1717, 10.1175/JPO-D-11-0214.1 Darelius, 2011, Faroe Bank Channel overflow: mesoscale variability, J. Phys. Oceanogr., 41, 2137, 10.1175/JPO-D-11-035.1 Darelius, 2013, Observations of barotropic oscillations and their influence on mixing in the Faroe Bank Channel overflow region, J. Phys. Oceanogr., 43, 1525, 10.1175/JPO-D-13-059.1 Dillon, 1980, The Batchelor spectrum and dissipation in the upper ocean, J. Geophys. Res., 85, 1910, 10.1029/JC085iC04p01910 Fer, 2014, Microstructure measurements from an underwater glider in the turbulent Faroe Bank Channel overflow, J. Atmos. Ocean. Technol., 31, 1128, 10.1175/JTECH-D-13-00221.1 Fer, 2010, Intense mixing of the Faroe Bank Channel overflow, Geophys. Res. Lett., 37, L02604, 10.1029/2009GL041924 Gargett, 1985, Evolution of scalar spectra with the decay of turbulence in a stratified fluid, J. Fluid Mech., 159, 379, 10.1017/S0022112085003263 Gargett, 1995, Mixing efficiencies in turbulent tidal fronts—results from direct and indirect measurements of density flux, J. Phys. Oceanogr., 25, 2583, 10.1175/1520-0485(1995)025<2583:MEITTF>2.0.CO;2 Gregg, 1980, The dynamic response of glass rod thermistors, J. Geophys. Res., 85, 2779, 10.1029/JC085iC05p02779 Gregg, 1993, Statistics of shear and turbulent dissipation profiles in random internal wave-fields, J. Phys. Oceanogr., 23, 1777, 10.1175/1520-0485(1993)023<1777:SOSATD>2.0.CO;2 Hansen, 2007, Faroe Bank Channel overflow 1995–2005, Prog. Oceanogr., 75, 817, 10.1016/j.pocean.2007.09.004 Johnson, 1992, Secondary circulation in the Faroe Bank Channel outflow, J. Phys. Oceanogr., 22, 927, 10.1175/1520-0485(1992)022<0927:SCITFB>2.0.CO;2 Jones, C., Creed, E., Glenn, S., Kerfoot, J., Kohut, J., Mudgal, C., Schofield, O., 2005. Slocum gliders—A component of operational oceanography. In: Proceedings of 14th International Symposium on Unmanned Untethered Submersible Technology (UUST). Kocsis, 1999, Comparison of dissipation of turbulent kinetic energy determined from shear and temperature microstructure, J. Mar. Syst., 21, 67, 10.1016/S0924-7963(99)00006-8 Kraichnan, 1968, Small-scale structure of a scalar field convected by turbulence, Phys. Fluids, 11, 945, 10.1063/1.1692063 Lueck, 2002, Oceanic velocity microstructure measurements in the 20th century, J. Oceanogr., 58, 153, 10.1023/A:1015837020019 Luketina, 2001, Determining turbulent kinetic energy dissipation from Batchelor curve fitting, J. Atmos. Ocean. Technol., 18, 100, 10.1175/1520-0426(2001)018<0100:DTKEDF>2.0.CO;2 McDougall, T., Barker, P., 2011. Getting started with TEOS-10 and the Gibbs Seawater (GSW) Oceanographic Toolbox. SCOR/IAPSO WG127. Merckelbach, 2010, Vertical water velocities from underwater gliders, J. Atmos. Ocean. Technol., 27, 547, 10.1175/2009JTECHO710.1 Nash, 1999, A thermocouple probe for high-speed temperature measurement in the ocean, J. Atmos. Ocean. Technol., 16, 1474, 10.1175/1520-0426(1999)016<1474:ATPFHS>2.0.CO;2 Nash, 2002, Microstructure estimates of turbulent salinity flux and the dissipation spectrum of salinity, J. Phys. Oceanogr., 32, 2312, 10.1175/1520-0485(2002)032<2312:MEOTSF>2.0.CO;2 Nasmyth, 1970 Oakey, 1982, Determination of the rate of dissipation of turbulent energy from simultaneous temperature and velocity shear microstructure measurements, J. Phys. Oceanogr., 12, 256, 10.1175/1520-0485(1982)012<0256:DOTROD>2.0.CO;2 Peters, 1988, On the parameterization of equatorial turbulence, J. Geophys. Res.: Oceans, 93, 1199, 10.1029/JC093iC02p01199 Ruddick, 2000, Maximum likelihood spectral fitting: the Batchelor spectrum, J. Atmos. Ocean. Technol., 17, 1541, 10.1175/1520-0426(2000)017<1541:MLSFTB>2.0.CO;2 Ruddick, 1997, Variations in apparent mixing efficiency in the North Atlantic central water, J. Phys. Oceanogr., 27, 2589, 10.1175/1520-0485(1997)027<2589:VIAMEI>2.0.CO;2 Sanchez, 2011, Small-scale spectrum of a scalar field in water: the Batchelor and Kraichman models, J. Phys. Oceanogr., 41, 2155, 10.1175/JPO-D-11-025.1 Seim, 2011, Mixing in the stratified interface of the Faroe Bank Channel overflow: the role of transverse circulation and internal waves, J. Geophys. Res., 116, C07022 Shih, 2005, Parameterization of turbulent fluxes and scales using homogeneous sheared stably stratified turbulence simulations, J. Fluid Mech., 525, 193, 10.1017/S0022112004002587 Smyth, 2001, The efficiency of mixing in turbulent patches: inferences from direct simulations and microstructure observations, J. Phys. Oceanogr., 31, 1969, 10.1175/1520-0485(2001)031<1969:TEOMIT>2.0.CO;2 Sommer, 2013, Revisiting microstructure sensor responses with implications for double-diffusive fluxes, J. Atmos. Ocean. Technol., 30, 1907, 10.1175/JTECH-D-12-00272.1 Thorpe, 2007 Ullgren, 2014, Interaction of the Faroe Bank Channel overflow with Iceland Basin intermediate waters, J. Geophys. Res.: Oceans, 119, 228, 10.1002/2013JC009437 Wolk, F., Lueck, R., St. Laurent, L., 2009. Turbulence measurements from a glider. In: Marine Technology for Our Future: Global and Local Challenges. MTS/IEEE, MTS/IEEE pp. 1–6.