Dissimilarity measures for time trajectories

Pierpaolo D’Urso1
1Dipartimento di Statistica, Probabilità e Statistiche Applicate, Università degli Studi di Roma “La Sapienza”, Roma, Italy

Tóm tắt

Từ khóa


Tài liệu tham khảo

Andrews, D. F. (1972), Plots of High-Dimensional Data.Biometrics, 28, 125–136.

Benedetti, C. (1972), La rappresentazione delle poligonali e l’inversione dei momenti assoluti di ordine dispari rispetto ad un centro arbitrario.Metron, XXX, 1–4, 1–22.

Bohte, Z., Cepar, D. andKošmelj, K. (1980), Clustering of time series. InCOMPSTAT’80, 587–593. Heidelberg: Physica-Verlag.

Box, G. E. P. andJenkins, G.M. (1976),Time Series Analysis. Forecasting and Control. San Francisco: Holden Day.

Buse, A. andLim, L. (1977), Cubic Splines as a Special Case of Restricted Least Squares.Journal of the American Statistical Association, 72, 64–72.

Carlier, A. (1986), Factor analysis of evolution and cluster methods on trajectories. InCOMPSTAT’86, 140–145. Heidelberg Wien: Physica-Verlag.

Carroll, J. D. andArabie, P. (1980), Multidimensional scaling.Annual Review of Psychology, 31, 438–457.

Coppi, R. andBolasco, S. (eds.) (1989),Multiwav Data Analysis, Amsterdam: Elsevier Science Publisher, North Holland.

Coppi, R. andD’Urso, P. (2000), Fuzzy time arrays and dissimilarity measures for fuzzy time trajectories. InData Analysis, Classification, and Related Methods (eds). H. A. L Kiers, J. P. Rasson, P. J. F. Groenen, M. Schader), 273–278. Berlin: Springer-Verlag.

Coppi, R. andD’Urso, P. (2001), The geometric approach to the comparison of multivariate time trajectories. InAdvances in Data Science and Classification (eds. S. Borra, R. Rocci, M. Vichi, M. Schader), 93–100. Heidelberg: Springer-Verlag.

Coppi, R. andZannella, F. (1978), L’analisi fattoriale di una serie temporale multipla relativa allo stesso insieme di unità statistiche. InAtti della XXIX Riunione Scientifica della SIS. Bologna, 61-79.

Costanzo, G. D. andD’Urso, P. (2000), A distance measure between structural models. InProceedings in Computational Statistics, COMPSTAT 2000 (eds. W. Jansen, J. G. Bethlehem), Utrecht 21–25 August 2000, 25-26. Netherlands, Statistics.

Cox, T. F. andCox, M. A. A. (1994),Multidimensional Scaling. London: Chapman & Hall.

D’Urso, P. andVichi, M. (1998), Dissimilarities between trajectories of a three-way longitudinal data set, inAdvances in Data Science and Classification (eds. A. Rizzi, M. Vichi, H. H. Bock), 585-592. Springer-Verlag.

De Boor, C. (1978),A Practical Guide to Splines. New York: Springer-Verlag.

Hylleberg, S. (1994),Modelling Seasonality, Advanced Texts in Econometrics, 4, Oxford University Press.

Joly, S. andLe Calvé, G. (1995),Three-way distances.Journal of Classification, 12, 191–205.

Johnston, J. (1999),Econometrica, Milan: F. Angeli.

Kakizawa, Y, Shumway, H. andTaniguchi, M. (1998), Discriminant and clustering for multivariate time series.Journal of the American Statistical Association, 93, 441, 328–340.

Kiers, H. A. L. (2000), Towards a standardized notation and terminology in multiway analysis.Journal of Chemometrics, 14, 105–122.

Košmelj, K. (1986), A two-step procedure for clustering time varying data.Journal of Mathematical Sociology, 12 (3), 315–326.

Košmelj, K. andBatagelj, V. (1990), Cross-sectional approach for clustering time varying data.Journal of Classification, 7, 99–109.

Košmelj, K. andLachet, B. (1983), Aspect temporel des variables hydriques du haut rhône français.Revue de Statistique Appliquée, XXXI (2), 5–18.

Maharaj E. A. (1996), A significance test for classifying ARMA models.Journal of Statist. Comput. Simul., 54, 305–331.

Maharaj E. A. (1999), Comparison and classification of stationary multivariate time series.Pattern Recognition, 32, 1129–1138.

Maharaj E. A. (2000), Cluster of time series.Journal of Classification, 17, 297–314.

MacGregor, J. F., Jaeckle, C., Kiparissides C. andKountoudi, M. (1994), Process monitoring and diagnosis by multiblock PLS methods.AIChE Journal, 40, 826–838.

Martin, R. J. (2000), A metric for ARMA process.IEEE Transactions on Signal Processing, 48 (4), 1164–1170.

Nomikos, P. andMacGregor, J. F. (1995), Multivariate SPC charts for monitoring batch process.Technometrics, 37, 41–59.

Harshman, R. A. andLundy, M. E. (1984), Data preprocessing and the extended PARAFAC model. InResearch Methods for Multimode Data Analysis (eds. H. G. Law, C. W. Snyder, J. A. Hattie, R. P. McDonald), 216–284. New York: Praeger.

Heston, A. andSummers, R. (1991), The Penn World Table (Mark 5): an expanded set of international comparisons, 1950–1988.Quarterly Journal of Economics, 327-368.

Piccolo, D. (1990), A distance measure for classifying ARIMA models.Journal of Time Series Analysis, 11(2), 153–164.

Raveh, A. (1981), A graphic display for characterization of seasonal pattern similarities of time series.The Statistician, 30 (3), 179–192.

Raveh A. andTapiero, C. S. (1980), Finding common seasonal patterns among time series.Journal of Econometrics, 12, 353–363.

Saporta, G. andLavallard, F. (1996),L’Analyse des Données Évolutives. Méthodes et Applications. Paris: Éditions Technip.

Sibson, R. (1978), Studies in the robustness of multidimensional scaling: Procrustes statistics.Journal of the Royal Statistical Society, B, 40, 234–238.

Zani, S. (1983), Osservazioni sulle serie storiche multiple e l’analisi dei gruppi. InAnalisi Moderna delle Serie Storiche (ed. D. Piccolo), 263-274. F. Angeli.