Dissection of haplotype-specific drug response phenotypes in multiclonal malaria isolates
Tài liệu tham khảo
Amato, 2017, Genetic markers associated with dihydroartemisinin-piperaquine failure in Plasmodium falciparum malaria in Cambodia: a genotype-phenotype association study, Lancet Infect. Dis., 17, 164, 10.1016/S1473-3099(16)30409-1
Anderson, 2005, The origins and spread of antimalarial drug resistance: lessons for policy makers, Acta Trop., 94, 269, 10.1016/j.actatropica.2005.04.010
Anderson, 2010, Inferred relatedness and heritability in malaria parasites, Proc. Biol. Sci., 277, 2531
Anderson, 2016, Population parameters underlying an ongoing soft sweep in southeast asian malaria parasites, Mol. Biol. Evol., 34, 131, 10.1093/molbev/msw228
Ariey, 2014, A molecular marker of artemisinin-resistant Plasmodium falciparum malaria, Nature, 505, 50, 10.1038/nature12876
Arnaud-Haond, 2007, Genclone: a computer program to analyse genotypic data, test for clonality and describe spatial clonal organization, Mol. Ecol. Notes, 7, 15, 10.1111/j.1471-8286.2006.01522.x
Chen, 2003, Pfcrt Allelic types with two novel amino acid mutations in chloroquine-resistant Plasmodium falciparum isolates from the Philippines, Antimicrob. Agents Chemother., 47, 3500, 10.1128/AAC.47.11.3500-3505.2003
Corbett, 2004, A novel DNA-based microfluorimetric method to evaluate antimalarial drug activity, Am. J. Trop. Med. Hyg., 70, 119, 10.4269/ajtmh.2004.70.119
Daniels, 2008, A general SNP-based molecular barcode for Plasmodium falciparum identification and tracking, Malar. J., 7, 223, 10.1186/1475-2875-7-223
Desjardins, 1979, Quantitative assessment of antimalarial activity in vitro by a semiautomated microdilution technique, Antimicrob. Agents Chemother., 16, 710, 10.1128/AAC.16.6.710
Djimde, 2001, A molecular marker for chloroquine-resistant falciparum malaria, N. Engl. J. Med., 344, 257, 10.1056/NEJM200101253440403
Dondorp, 2009, Artemisinin resistance in Plasmodium falciparum malaria, N. Engl. J. Med., 361, 455, 10.1056/NEJMoa0808859
Dondorp, 2010, Artemisinin resistance: current status and scenarios for containment, Nat. Rev. Microbiol., 8, 272, 10.1038/nrmicro2331
Duraisingh, 2000, The tyrosine-86 allele of the pfmdr1 gene of Plasmodium falciparum is associated with increased sensitivity to the anti-malarials mefloquine and artemisinin, Mol. Biochem. Parasitol., 108, 13, 10.1016/S0166-6851(00)00201-2
Duraisingh, 2000, Increased sensitivity to the antimalarials mefloquine and artemisinin is conferred by mutations in the pfmdr1 gene of Plasmodium falciparum, Mol. Microbiol., 36, 955, 10.1046/j.1365-2958.2000.01914.x
Duru, 2015, Plasmodium falciparum dihydroartemisinin-piperaquine failures in Cambodia are associated with mutant K13 parasites presenting high survival rates in novel piperaquine in vitro assays: retrospective and prospective investigations, BMC Med., 13, 305, 10.1186/s12916-015-0539-5
Fidock, 2000, Mutations in the P. falciparum digestive vacuole transmembrane protein PfCRT and evidence for their role in chloroquine resistance, Mol. Cell, 6, 861, 10.1016/S1097-2765(05)00077-8
Fola, 2017, Higher complexity of infection and genetic diversity of Plasmodium vivax than Plasmodium falciparum across all malaria transmission zones of Papua New Guinea, Am. J. Trop. Med. Hyg., 96, 630
Hamilton, 2019, Evolution and expansion of multidrug-resistant malaria in southeast Asia: a genomic epidemiology study, Lancet Infect. Dis., 19, 943, 10.1016/S1473-3099(19)30392-5
Hartwig, 2013, SYBR Green I®-based parasite growth inhibition assay for measurement of antimalarial drug susceptibility in Plasmodium falciparum, 122
Heinberg, 2013, Direct evidence for the adaptive role of copy number variation on antifolate susceptibility in Plasmodium falciparum, Mol. Microbiol., 88, 702, 10.1111/mmi.12162
Jiang, 2008, Genome-wide compensatory changes accompany drug- selected mutations in the Plasmodium falciparum crt gene, PloS One, 3, e2484, 10.1371/journal.pone.0002484
Johnson, 2004, Evidence for a central role for PfCRT in conferring Plasmodium falciparum resistance to diverse antimalarial agents, Mol. Cell, 15, 867, 10.1016/j.molcel.2004.09.012
Johnson, 2007, Assessment and continued validation of the malaria SYBR green I-based fluorescence assay for use in malaria drug screening, Antimicrob. Agents Chemother., 51, 1926, 10.1128/AAC.01607-06
Kublin, 2003, Reemergence of chloroquine-sensitive Plasmodium falciparum malaria after cessation of chloroquine use in Malawi, J. Infect. Dis., 187, 1870, 10.1086/375419
Laufer, 2006, Return of chloroquine antimalarial efficacy in Malawi, N. Engl. J. Med., 355, 1959, 10.1056/NEJMoa062032
Laufer, 2010, Return of chloroquine-susceptible falciparum malaria in Malawi was a reexpansion of diverse susceptible parasites, J. Infect. Dis., 202, 801, 10.1086/655659
Levin, 2000, Compensatory mutations, antibiotic resistance and the population genetics of adaptive evolution in bacteria, Genetics, 154, 985, 10.1093/genetics/154.3.985
Liu, 2008, Effects of Plasmodium falciparum mixed infections on in vitro antimalarial drug tests and genotyping, Am. J. Trop. Med. Hyg., 79, 178, 10.4269/ajtmh.2008.79.178
Maisnier-Patin, 2004, Adaptation to the deleterious effects of antimicrobial drug resistance mutations by compensatory evolution, Res. Microbiol., 155, 360, 10.1016/j.resmic.2004.01.019
Makler, 1993, Parasite lactate dehydrogenase as an assay for Plasmodium falciparum drug sensitivity, Am. J. Trop. Med. Hyg., 48, 739, 10.4269/ajtmh.1993.48.739
Maude, 2014, Spatial and temporal epidemiology of clinical malaria in Cambodia 2004-2013, Malar. J., 13, 385, 10.1186/1475-2875-13-385
Mbaisi, 2004, Drug susceptibility and genetic evaluation of Plasmodium falciparum isolates obtained in four distinct geographical regions of Kenya, Antimicrob. Agents Chemother., 48, 3598, 10.1128/AAC.48.9.3598-3601.2004
Mideo, 2016, A deep sequencing tool for partitioning clearance rates following antimalarial treatment in polyclonal infections, Evol. Med. Public Health, 21, 10.1093/emph/eov036
Mott, 2015, High-throughput matrix screening identifies synergistic and antagonistic antimalarial drug combinations, Sci. Rep., 5, 13891, 10.1038/srep13891
Nair, 2008, Adaptive copy number evolution in malaria parasites, PLoS Genet., 4, 10.1371/journal.pgen.1000243
Nair, 2014, Single-cell genomics for dissection of complex malaria infections, Genome Res., 24, 1028, 10.1101/gr.168286.113
Nkhoma, 2012, Close kinship within multiple-genotype malaria parasite infections, Proc. Biol. Sci., 279, 2589
Nkhoma, 2018, Intra-host dynamics of co-infecting parasite genotypes in asymptomatic malaria patients, Infect. Genet. Evol., 65, 414, 10.1016/j.meegid.2018.08.018
Nkhoma, 2020, Co-transmission of related malaria parasite lineages shapes within-host parasite diversity, Cell Host Microbe, 27, 93, 10.1016/j.chom.2019.12.001
Noedl, 2005, Simple histidine-rich protein 2 double-site sandwich enzyme-linked immunosorbent assay for use in malaria drug sensitivity testing, Antimicrob. Agents Chemother., 49, 3575, 10.1128/AAC.49.8.3575-3577.2005
Phyo, 2012, Emergence of artemisinin-resistant malaria on the western border of Thailand: a longitudinal study, Lancet, 379, 1960, 10.1016/S0140-6736(12)60484-X
Plowe, 2003, Monitoring antimalarial drug resistance: making the most of the tools at hand, J. Exp. Biol., 206, 3745, 10.1242/jeb.00658
Price, 2004, Mefloquine resistance in Plasmodium falciparum and increased pfmdr1 gene copy number, Lancet, 364, 438, 10.1016/S0140-6736(04)16767-6
Robert, 2019, Baseline ex vivo and molecular responses of Plasmodium falciparum isolates to piperaquine before implementation of dihydroartemisinin-piperaquine in Senegal, Antimicrob. Agents Chemother., 63, 10.1128/AAC.02445-18
Roper, 2004, Intercontinental spread of pyrimethamine-resistant malaria, Science, 305, 1124, 10.1126/science.1098876
Rosario, 1981, Cloning of naturally occurring mixed infections of malaria parasites, Science, 212, 1037, 10.1126/science.7015505
Ross, 2018, Emerging Southeast Asian PfCRT mutations confer Plasmodium falciparum resistance to the first-line antimalarial piperaquine, Nat. Commun., 9, 3314, 10.1038/s41467-018-05652-0
Sidhu, 2005, pfmdr1 mutations contribute to quinine resistance and enhance mefloquine and artemisinin sensitivity in Plasmodium falciparum, Mol. Microbiol., 57, 913, 10.1111/j.1365-2958.2005.04729.x
Talisuna, 2003, Intensity of transmission and spread of gene mutations linked to chloroquine and sulphadoxine-pyrimethamine resistance in falciparum malaria, Int. J. Parasitol., 33, 1051, 10.1016/S0020-7519(03)00156-5
Trape, 2001, The public health impact of chloroquine resistance in Africa, Am. J. Trop. Med. Hyg., 64, 12, 10.4269/ajtmh.2001.64.12
Uwimana, 2020, Emergence and clonal expansion of in vitro artemisinin-resistant Plasmodium falciparum kelch13 R561H mutant parasites in Rwanda, Nat. Med., 26, 1602, 10.1038/s41591-020-1005-2
Vaughan, 2015, Plasmodium falciparum genetic crosses in a humanized mouse model, Nat. Methods, 12, 631, 10.1038/nmeth.3432
Veiga, 2016, Globally prevalent PfMDR1 mutations modulate Plasmodium falciparum susceptibility to artemisinin-based combination therapies, Nat. Commun., 7, 11553, 10.1038/ncomms11553
Vincent, 2018, In vivo-selected compensatory mutations restore the fitness cost of mosaic penA alleles that confer ceftriaxone resistance in Neisseria gonorrhoeae, mBio, 9, 10.1128/mBio.01905-17
Wargo, 2007, Competitive release and facilitation of drug-resistant parasites after therapeutic chemotherapy in a rodent malaria model, Proc. Natl. Acad. Sci. U. S. A., 104, 19914, 10.1073/pnas.0707766104
Weisman, 2006, Searching for new antimalarial therapeutics amongst known drugs, Chem. Biol. Drug Des., 67, 409, 10.1111/j.1747-0285.2006.00391.x
WHO, 2001
WHO, 2011
WHO, 2020
Witkowski, 2013, Novel phenotypic assays for the detection of artemisinin-resistant Plasmodium falciparum malaria in Cambodia: in-vitro and ex-vivo drug-response studies, Lancet Infect. Dis., 13, 1043, 10.1016/S1473-3099(13)70252-4
Witkowski, 2017, A surrogate marker of piperaquine-resistant Plasmodium falciparum malaria: a phenotype-genotype association study, Lancet Infect. Dis., 17, 174, 10.1016/S1473-3099(16)30415-7
Woodrow, 2017, The clinical impact of artemisinin resistance in Southeast Asia and the potential for future spread, FEMS Microbiol. Rev., 41, 34, 10.1093/femsre/fuw037
