Công Nghệ Đột Phá Để Đạt Được Sự Resilience Trong Chuỗi Cung Ứng Thời Kỳ COVID-19: Nghiên Cứu Tình Huống Triển Khai Công Nghệ Hình Ảnh Vệ Tinh Và Blockchain Trong Chuỗi Cung Ứng Cá

Information Systems Frontiers - Tập 24 Số 4 - Trang 1107-1123 - 2022
Tuhin Sengupta1, Gopalakrishnan Narayanamurthy2, Roger Moser3, Vijay Pereira4, Devleena Bhattacharjee5
1Indian Institute of Management Ranchi, Ranchi, India
2University of Liverpool Management School, Liverpool, UK
3Macquarie Business School, Macquarie University, Sydney, Australia
4Neoma Business School, Mont-Saint-Aignan, France
5Numer8, Mumbai, India

Tóm tắt

Tóm tắt

Trong các chuỗi cung ứng nơi các bên liên quan thuộc tầng lớp kinh tế thiệt thòi và là một phần quan trọng trong phân phối của chuỗi cung ứng, sự phức tạp tăng lên theo nhiều cách. Ngành thủy sản ở các quốc gia đang phát triển là một lĩnh vực như vậy, nơi sự phức tạp không chỉ xuất phát từ việc sản phẩm dễ hư hỏng mà còn từ sự phụ thuộc vào sinh kế của các cộng đồng vùng ven biển thuộc tầng lớp kinh tế yếu thế. Bài viết này giải thích các thách thức trong bối cảnh của chuỗi cung ứng cá ở một quốc gia đang phát triển và mô tả cách thức tích hợp các công nghệ đột phá có thể giải quyết những thách thức đó. Thông qua cách tiếp cận điểm khác biệt tích cực, chúng tôi chỉ ra cách mà các công ty có thể hỗ trợ các chuỗi cung ứng không có tổ chức với các nhà cung cấp thuộc tầng lớp kinh tế thiệt thòi bằng cách thiết kế lại chuỗi cung ứng một cách cẩn thận thông qua việc tích hợp hình ảnh vệ tinh và công nghệ blockchain. Trong bối cảnh COVID-19, chúng tôi nhấn mạnh cách mà các công nghệ này cải thiện đáng kể khả năng phục hồi của chuỗi cung ứng và đồng thời đóng góp vào cơ hội tạo thu nhập cho những ngư dân nghèo ở các quốc gia đang phát triển. Nghiên cứu của chúng tôi có những tác động quan trọng đối với cả thị trường đang phát triển và các chuyên gia chuỗi cung ứng thực phẩm, vì bài viết này giải quyết các vấn đề như tính dễ hư hỏng, sự không khớp giữa cung và cầu, giá cả không công bằng, và tính minh bạch dữ liệu liên quan đến chất lượng trong toàn bộ chuỗi giá trị.

Từ khóa


Tài liệu tham khảo

Abedi, A., & Zhu, W. (2017). An optimisation model for purchase, production and distribution in fish supply chain–a case study. International Journal of Production Research, 55(12), 3451–3464.

Albanna, B., & Heeks, R. (2019). Positive deviance, big data, and development: A systematic literature review. The Electronic Journal of Information Systems in Developing Countries, 85(1), e12063.

Ali, M. H., Suleiman, N., Khalid, N., Tan, K. H., Tseng, M. L., & Kumar, M. (2021). Supply chain resiliencereactive strategies for food SMEs in coping to COVID-19 crisis. Trends in Food Science & Technology, 109(3), 94–102.

Al-Talib, M., Melhem, W. Y., Anosike, A. I., Reyes, J. A. G., & Nadeem, S. P. (2020). Achieving resilience in the supply chain by applying IoT technology. Procedia CIRP, 91, 752–757.

Barua, P., Chakraborty, S., Das, J., Sen, S., Barua, P., Chakraborty, S., et al. (2012). Fishing industry and fisherfolk existence through microcredit services for India and Bangladesh. Bangladesh Research Publications Journal, 7(1), 36–45.

Baxter, P., & Jack, S. (2008). Qualitative case study methodology: Study design and implementation for novice researchers. The Qualitative Report, 13(4), 544–559.

Baxter, R., Taylor, N., Kellar, I., & Lawton, R. (2016). What methods are used to apply positive deviance within healthcare organisations? A systematic review. BMJ Quality and Safety, 25(3), 190–201.

Belhadi, A., Kamble, S., Jabbour, C. J. C., Gunasekaran, A., Ndubisi, N. O., & Venkatesh, M. (2021). Manufacturing and service supply chain resilience to the COVID-19 outbreak: Lessons learned from the automobile and airline industries. Technological Forecasting and Social Change, 163, 120447.

Bower, J.L., & Christensen, C.M. (1995). Disruptive technologies: Catching the wave. Harvard Business Review. Available at https://hbr.org/1995/01/disruptive-technologies-catching-the-wave. Accessed 16 Nov 2020.

Casado-Vara, R., Prieto, J., De la Prieta, F., & Corchado, J. M. (2018). How blockchain improves the supply chain: Case study alimentary supply chain. Procedia Computer Science, 134, 393–398.

CDC (2020). Foodborne Germs and Illnesses. Retrieved from https://www.cdc.gov/foodsafety/foodborne-germs.html#:~:text=CDC%20estimates%20that%20each%20year,are%20hospitalized%2C%20and%203%2C000%20die. Accessed 20 March 2021.

Chen, H. Y., Das, A., & Ivanov, D. (2019). Building resilience and managing post-disruption supply chain recovery: Lessons from the information and communication technology industry. International Journal of Information Management, 49, 330–342.

Choe, Y. C., Park, J., Chung, M., & Moon, J. (2009). Effect of the food traceability system for building trust: Price premium and buying behavior. Information Systems Frontiers, 11(2), 167–179.

Craighead, C. W., Ketchen Jr., D. J., & Darby, J. L. (2020). Pandemics and supply chain Management research: Toward a theoretical toolbox. Decision Sciences.

Cui, Y. (2015, September). Improving supply chain resilience with employment of IOT. In: International Conference on Multidisciplinary Social Networks Research (pp. 404-414). Springer.

Dhillon, G., Coss, D., & Hackney, R. (2001). Interpreting the role of disruptive technologies in e-businesses. Logistics Information Management, 14(1/2), 163–171.

Dubey, R., Gunasekaran, A., Bryde, D. J., Dwivedi, Y. K., & Papadopoulos, T. (2020). Blockchain technology forenhancing swift-trust, collaboration and resilience within a humanitarian supply chain setting. International Journalof Production Research, 58(11), 3381–3398.

Ehrenberg, A. J., & King, J. L. (2020). Blockchain in context. Information Systems Frontiers, 22(1), 29–35.

El Baz, J., & Ruel, S. (2021). Can supply chain risk management practices mitigate the disruption impacts on supply chains’ resilience and robustness? Evidence from an empirical survey in a COVID-19 outbreak era. International Journal of Production Economics, 233, 107972.

FAO. (2005). Increasing the contribution of small-scale fisheries to poverty alleviation and food security. FAO technical guidelines for responsible fisheries. Retrieved from http://www.fao.org/3/a0237e/a0237e.pdf. Accessed 10 May 2021.

Feng, Y., Bruhn, C., & Management, H. (2016). Food safety education for people with diabetes and pregnant women: A positive deviance approach. Food Control, 66, 107–115.

Feng, Y., Bruhn, C. M., Elder, G., & Boyden, D. (2019). Assessment of knowledge and behavior change of a high school positive deviance food safety curriculum. Journal of Food Science Education, 18(2), 45–51.

Goldsby, T. J., & Zinn, W. (2016). Technology innovation and new business models: Can logistics and supply chain research accelerate the evolution? Journal of Business Logistics, 37(2), 80–81.

Goode, E. (1991). Positive deviance: A viable concept? Deviant Behavior, 12(3), 289–309.

Gu, M., Yang, L., & Huo, B. (2021). The impact of information technology usage on supply chain resilience andperformance: An ambidexterous view. International Journal of Production Economics, 232, 107956.

Hedwall, M. (2020, June). The ongoing impact of COVID-19 on global supply chains. In World Economic Forum (Vol. 22).

Hobbs, J. E. (2021). Food supply chain resilience and the COVID‐19 pandemic: What have we learned?. Canadian Journal of Agricultural Economics/Revue canadienne d'agroeconomie, 69(2), 189–196.

Hughes, R., & Coakley, J. (1991). Positive deviance among athletes: The implications of overconformity to the sport ethic. Sociology of Sport Journal, 8(4), 307–325.

Ivanov, D. (2020). Viable supply chain model: integrating agility, resilience and sustainability perspectives— lessons from and thinking beyond the COVID-19 pandemic. Annals of Operations Research, 1–21. https://doi.org/10.1007/s10479-020-03640-6.

Ivanov, D. (2021). Lean resilience: AURA (Active Usage of Resilience Assets) framework for post-COVID-19 supply chain management. The International Journal of Logistics Management. https://doi.org/10.1108/IJLM-11-2020-0448

Ivanov, D., & Das, A. (2020). Coronavirus (COVID-19/SARS-CoV-2) and supply chain resilience: A research note. International Journal of Integrated Supply Management, 13(1), 90–102.

Ivanov, D., & Dolgui, A. (2020). Viability of intertwined supply networks: Extending the supply chain resilience angles towards survivability. A position paper motivated by COVID-19 outbreak. International Journal of Production Research, 58(10), 2904–2915.

Karlsen, K. M., Sørensen, C. F., Forås, F., & Olsen, P. (2011). Critical criteria when implementing electronic chain traceability in a fish supply chain. Food Control, 22(8), 1339–1347.

Lai, W. W., Chiu, D. K., & Feng, Z. (2013). A collaborative food safety service agent architecture with alerts and trust. Information Systems Frontiers, 15(4), 599–612.

Lapping, K., Marsh, D. R., Rosenbaum, J., Swedberg, E., Sternin, J., Sternin, M., & Schroeder, D. G. (2002). The positive deviance approach: Challenges and opportunities for the future. Food and Nutrition Bulletin, 23(4_suppl_1), 128–135.

Lawton, R., Taylor, N., Clay-Williams, R., & Braithwaite, J. (2014). Positive deviance: A different approach to achieving patient safety. BMJ Quality and Safety, 23(11), 880–883.

Li, Y., Zobel, C. W., Seref, O., & Chatfield, D. (2020). Network characteristics and supply chain resilience under conditions of risk propagation. International Journal of Production Economics, 223, 107529.

Liu, W., Liu, R. H., Chen, H., & Mboga, J. (2020). Perspectives on disruptive technology and innovation: Exploring conflicts, characteristics in emerging economies. International Journal of Conflict Management, 33(3), 313–331.

Mahroof, K., Weerakkody, V., Onkal, D., & Hussain, Z. (2020). Technology as a disruptive agent: Intergenerational perspectives. Information Systems Frontiers, 22(3), 749–770.

Mandal, S. (2020). Exploring the significance of big data infrastructure in dynamic capability development: A supply chain resilience perspective. International Journal of Work Organisation and Emotion, 11(3), 247–264.

McClenachan, L., Dissanayake, S. T., & Chen, X. (2016). Fair trade fish: Consumer support for broader seafood sustainability. Fish and Fisheries, 17(3), 825–838.

Meriton, R. & Graham, G. (2017) International supply chain resilience: a Big Data Perspective. In: Proceedings of the 21st Cambridge International Manufacturing Symposium. 21st Cambridge International Manufacturing Symposium - Globalisation 2.0, 28-29 Sep 2017, Cambridge, UK. Institute for Manufacturing, University of Cambridge , pp. 158–164.

Min, H. (2019). Blockchain technology for enhancing supply chain resilience. Business Horizons, 62(1), 35–45.

Mohr, S., & Khan, O. (2015). 3D printing and its disruptive impacts on supply chains of the future. Technology Innovation Management Review, 5(11), 20.

Nagendra, N. P., Narayanamurthy, G., & Moser, R. (2020). Satellite big data analytics for ethical decisionmaking in farmer’s insurance claim settlement: minimization of type-I and type-II errors. Annals of Operations Research, 1–22, https://doi.org/10.1007/s10479-020-03793-4.

Nagendra, N. P., Narayanamurthy, G., & Moser, R. (2020). Management of humanitarian relief operations using satellite big data analytics: The case of Kerala floods. Annals of Operations Research, 1-26. https://doi.org/10.1007/s10479-020-03593-w.

Neffa-Creech, D., Clarke, P., Evans, S. H., & Glovinsky, J. (2020). “Food is something everyone should participate in”: A positive deviance approach to understanding the use of a food and nutrition app in low-income. Latino homes. SAGE Open Medicine, 8, 2050312120934842.

Nel, H. (2018). A comparison between the asset-oriented and needs-based community development approaches in terms of systems changes. Practice, 30(1), 33–52.

Nordhagen, S., Igbeka, U., Rowlands, H., Shine, R. S., Heneghan, E., & Tench, J. (2021). COVID-19 and small enterprises in the food supply chain: Early impacts and implications for longer-term food system resilience in low-and middle-income countries. World Development, 141, 105405.

Oceania. (2019). Oceana Finds Seafood Fraud Persists, More Than 20% of Samples Mislabeled. Retrieved from https://usa.oceana.org/press-releases/oceana-finds-seafood-fraud-persists. Accessed 20 March 2021.

Pascale, R., Pascale, R. T., Sternin, J., & Sternin, M. (2010). The power of positive deviance: How unlikely innovators solve the world's toughest problems. Harvard Business Press.

Rodríguez-Espíndola, O., Chowdhury, S., Beltagui, A., & Albores, P. (2020). The potential of emergent disruptive technologies for humanitarian supply chains: The integration of blockchain, artificial intelligence and 3D printing. International Journal of Production Research, 58(15), 4610–4630.

Sagarin, E. (1985). Positive deviance: An oxymoron. Deviant Behavior, 6(2), 169–181.

Schatteman, O., Woodhouse, D., & Terino, J. (2020). Supply chain lessons from Covid-19: Time to refocus on resilience (pp. 1–12). Bain & Company, Inc..

Sengupta, T., Narayanamurthy, G., Hota, P. K., Sarker, T., & Dey, S. (2021). Conditional acceptance of digitized business model innovation at the BoP: A stakeholder analysis of eKutir in India. Technological Forecasting and Social Change, 170, 120857.

Sharma, N. (2021). Using positive deviance to enhance employee engagement: an interpretive structural modelling approach. International Journal of Organizational Analysis. https://doi.org/10.1108/IJOA-07-2020-2341

Shivarajan, S., & Srinivasan, A. (2013). The poor as suppliers of intellectual property: A social network approach to sustainable poverty alleviation. Business Ethics Quarterly, 23(3), 381–406.

Siggelkow, N. (2007). Persuasion with case studies. Academy of Management Journal, 50(1), 20–24.

Sodhi, M. S., & Tang, C. S. (2014). Supply-chain research opportunities with the poor as suppliers or distributors in developing countries. Production and Operations Management, 23(9), 1483–1494.

Sull, D., Sull, C., & Bersin, J. (2020). Five ways leaders can support remote work. MIT Sloan Management Review, 61(4), 1–10.

Thilmany, D., Canales, E., Low, S. A., & Boys, K. (2021). Local food supply chain dynamics and resilience during COVID-19. Applied Economic Perspectives and Policy, 43(1), 86–104.

Toorop, R. A., Ceccarelli, V., Bijarniya, D., Jat, M. L., Jat, R. K., Lopez-Ridaura, S., & Groot, J. C. (2020). Using a positive deviance approach to inform farming systems redesign: A case study from Bihar. India. Agricultural Systems, 185, 102942.

Vivaldini, M., & de Sousa, P. R. (2021). Blockchain connectivity inhibitors: weaknesses affecting supply chain interaction and resilience. Benchmarking: An International Journal, 28(10), 3102–3136.

Wamba, S. F., Queiroz, M. M., & Trinchera, L. (2020). Dynamics between blockchain adoption determinants and supply chain performance: An empirical investigation. International Journal of Production Economics, 229, 107791.

Whited, T., Feng, Y., & Bruhn, C. M. (2019). Evaluation of the high school food safety curriculum using a positive deviance model. Food Control, 96, 324–328.

WHO. (2020). Food Safety. Retrieved from https://www.who.int/news-room/fact-sheets/detail/food-safety#:~:text=An%20estimated%20600%20million%20%E2%80%93%20almost,healthy%20life%20years%20(DALYs). Accessed 20 March 2021.

Wong, C. W., Lirn, T. C., Yang, C. C., & Shang, K. C. (2020). Supply chain and external conditions under which supply chain resilience pays: An organizational information processing theorization. International Journal of Production Economics, 226, 107610.

Yin, R. K. (1998). The abridged version of case study research. Handbook of applied social research methods, 2, 229–259.

Zhang, X., & Zhao, J. (2019). The impact of big data on supply chain resilience: the moderating effect of supply

chain complexity. WHICEB 2019 Proceedings. 22. https://aisel.aisnet.org/whiceb2019/22

Zhu, X. N., Peko, G., Sundaram, D., & Piramuthu, S. (2021). Blockchain-Based Agile Supply Chain Frameworkwith IoT. Information Systems Frontiers, 1–16, https://doi.org/10.1007/s10796-021-10114-y.