Disruption of the uncoupling protein-2 gene in mice reveals a role in immunity and reactive oxygen species production

Nature Genetics - Tập 26 Số 4 - Trang 435-439 - 2000
Denis Arsenijevic1, Hiroki Onuma2, Claire Pecqueur3, Serge Raimbault3, Brian S. Manning2, Bruno Miroux3, Elodie Couplan3, Marie‐Clotilde Alves‐Guerra3, Marc Goubern4, Richard S. Surwit2, Frédéric Bouillaud3, Denis Richard1, Sheila Collins5,2, Daniel Ricquier3
1Centre de Recherche de Hôpital Laval et Centre de Recherche sur le Métabolisme Energétique, Université Laval, Québec, Canada
2Psychiatry and Behavioral Sciences, Duke University Medical Center, Durham, USA
3Centre de Recherche sur l'Endocrinologie Moléculaire et le Développement, Centre National de la Recherche Scientifique, Meudon France
4Ecole Pratique des Hautes Etudes/Institut National de la Recherche Agronomique, Jouy-en-Josas, France
5Pharmacology, Duke University Medical Center, Durham, USA

Tóm tắt

Từ khóa


Tài liệu tham khảo

Ricquier, D. & Bouillaud, F. The uncoupling protein homologues: UCP1, UCP2, UCP3, StUCP and AtUCP. Biochem. J. 345, 161–179 (2000).

Boss, O., Hagen, T. & Lowell, B.B. Uncoupling proteins 2 and 3. Potential regulators of mitochondrial energy metabolism. Diabetes 49, 143–156 (2000).

Laloi, M. et al. A plant cold-induced uncoupling protein. Nature 389, 135–136 (1997).

Fleury, C. et al. Uncoupling-protein-2: a novel gene linked to obesity and hyperinsulinemia . Nature Genet. 15, 269– 272 (1997).

Gimeno, R.E. et al. Cloning and characterization of an uncoupling protein homolog: a potential molecular mediator of human thermogenesis. Diabetes 46, 900–906 ( 1997).

Rial, E. et al. Retinoids activate proton transport by the uncoupling proteins UCP1 and UCP2. EMBO J. 21, 5827– 5833 (1999).

Larrouy, D. et al. Kupffer cells are a dominant site of uncoupling protein 2 expression in rat liver. Biochem. Biophys. Res. Commun. 235, 760–764 (1997).

Enerback, S. et al. Mice lacking mitochondrial uncoupling protein are cold-sensitive but not obese. Nature 387, 90– 94 (1997).

Nègre-Salvayre, A. et al. A role for uncoupling protein-2 as a regulator of mitochondrial hydrogen peroxide generation. FASEB J. 11, 809–815 (1997).

Skulachev, V.P. Uncoupling: new approaches to an old problem of bioenergetics. Biochim. Biophys. Acta 1363, 100–124 (1998).

Nicholls, D.G. & Budd, S.L. Mitochondria and neuronal survival. Physiol. Rev. 80, 315 –360 (2000).

Arsenijevic, D., Girardier, L., Seydoux, J., Chang, H.R. & Dulloo, A.G. Altered energy balance and cytokine gene expression in a murine model of chronic infection with Toxoplasma gondii. Am. J. Physiol. 272, E908–917 (1997).

Richard, D. et al. Distribution of the uncoupling protein 2 mRNA in the mouse brain. J. Comp. Neurol. 397, 549– 560 (1998).

Murray, H.W., Juangbhanich, C.W., Nathan, C.F. & Cohn, Z.A. Macrophage oxygen-dependent antimicrobial activity. II. The role of oxygen intermediates. J. Exp. Med. 150, 950– 964 (1979).

Marini, M., Frabetti, F., Zunica, G., Brandi, G. & Cantoni, O. Differential effect of L-histidine in human lymphocytes damaged by different oxygen radical producing systems . Mutat. Res. 301, 243– 248 (1993).

Zamora, R., Alaiz, M. & Hidalgo, F.J. Feed-back inhibition of oxidative stress by oxidized lipid/amino acid reaction products. Biochemistry 36 , 15765–15771 (1997).

Rothe, G. & Valet, G. Flow cytometric analysis of respiratory burst activity in phagocytes with hydroethidine and 2′,7′-dichlorofluorescin . J. Leukoc. Biol. 47, 440– 448 (1990).

Wallace, D.C. Mitochondrial diseases in man and mouse. Science 283 , 1482–1488 (1999).

Lee, F.Y.J. et al. Phenotypic abnormalities in macrophages from leptin-deficient, obese mice. Am. J. Physiol. Cell Physiol. 45, C386–C394 (1999).

Nishikawa, T. et al. Normalizing mitochondrial superoxide production blocks three pathways of hyperglycaemic damage. Nature 404, 787–790 (2000).

Vidal-Puig, A.J. et al. Energy metabolism in uncoupling protein 3 gene knockout mice . J. Biol. Chem. 275, 16258– 16266 (2000).

Diehl, A.M. & Hoek, J.B. Mitochondrial uncoupling: role of uncoupling protein anion carriers and relationship to thermogenesis and weight control “the benefits of losing control”. J. Bioenerg. Biomembr. 31, 493–506 (1999).

Cohen, B.A. Neurologic manifestations of toxoplasmosis in AIDS. Semin. Neurol. 19, 201–211 ( 1999).

Pecqueur, C. et al. Functional organization of the human uncoupling protein-2 gene, and juxtaposition to the uncoupling protein-3 gene. Biochem. Biophys. Res. Commun. 255, 40–46 (1999).

Surwit, R.S. et al. Differential effects of fat and sucrose on the development of obesity and diabetes in C57BL/6J and A/J mice. Metabolism 44, 645–651 (1995).

Makioka, A. & Ohtomo, H. An increased DNA polymerase activity associated with virulence of Toxoplasma gondii. J. Parasitol. 81, 1021–1022 (1995).

Akinshina, G.T., Abakarova, E.G. & Kirillova, F.M. The relationship between the fate of the agent of toxoplasmosis, Toxoplasma gondii, in macrophages cultivated in vitro and the virulence of the parasites. Biull. Eksp. Biol. Med. 80, 60–63 (1975).

Rook, G.A., Steele, J., Umar, S. & Dockrell, H.M. A simple method for the solubilisation of reduced NBT, and its use as a colorimetric assay for activation of human macrophages by γ-interferon. J. Immunol. Methods 82, 161–167 ( 1985).