Disruption of protein function by pathogenic mutations: common and uncommon mechanisms

Biochemistry and Cell Biology - Tập 97 Số 1 - Trang 46-57 - 2019
Mikko Taipale1,2
1Donnelly Centre, Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 3E1, Canada.
2Molecular Architecture of Life Program, Canadian Institute for Advanced Research, Toronto, ON M5S 1M1, Canada.

Tóm tắt

Mutations in protein-coding regions underlie almost all Mendelian disorders, drive tumorigenesis, and contribute to susceptibility to common diseases. Despite the great diversity of diseases that are caused by coding mutations, the cellular processes that affect, and are affected by, pathogenic variants at the molecular level are fundamentally conserved. Experimental and computational approaches have revealed that a substantial fraction of disease mutations are not simple loss-of-function alleles. Rather, these pathogenic variants disrupt protein function in more subtle ways by tuning protein folding pathways, altering subcellular trafficking, interrupting signaling cascades, and rewiring highly connected interaction networks. Focusing mainly on Mendelian disorders, this review discusses the common mechanisms by which deleterious mutations disrupt protein function and how these disruptions can be exploited in the development of novel therapies.

Từ khóa


Tài liệu tham khảo

10.3389/fcell.2016.00023

10.1126/science.aad2257

10.1038/nrg.2017.75

10.1016/j.neuron.2013.09.004

10.1371/journal.pone.0107353

10.1002/humu.22980

10.1002/pro.2928

10.1016/j.ajhg.2017.04.003

10.1073/pnas.0506001102

10.3389/fmolb.2017.00019

10.1073/pnas.1013657108

10.1038/nbt.3514

10.1016/j.ajhg.2015.06.009

10.1038/nature08617

10.1111/cts.12501

10.1056/NEJMra0907180

10.1016/j.jmb.2004.08.091

10.1093/nar/gkw1121

10.1002/mgg3.208

10.1016/j.str.2015.03.028

10.1016/j.cell.2013.03.002

10.1016/j.cels.2017.08.013

10.1038/nrg.2016.49

10.1146/annurev-genom-090314-025003

10.1016/j.ajhg.2013.05.022

10.1016/j.cell.2015.11.015

10.1038/nature15510

10.1038/nchembio.275

10.1038/nature22366

10.1101/gr.157610.113

10.1038/180326a0

10.1146/annurev.genet.40.110405.090412

10.1016/j.cell.2012.12.009

10.1038/nature14497

10.1038/nbt.2732

10.1016/j.cell.2017.01.023

10.1073/pnas.1619574114

10.1038/srep00090

10.1016/j.sbi.2017.12.006

10.1038/nrg2707

10.1093/nar/gkv1222

10.1186/1471-2164-10-122

10.1038/nature19057

10.1016/j.cell.2011.10.045

Li S., 2010, Pac. Symp. Biocomput., 2010, 337

10.1038/ng.3701

10.1016/j.molmed.2011.10.003

10.1038/cr.2015.20

10.1126/science.1257601

10.1146/annurev-genet-102108-134222

10.1002/humu.20763

10.1038/nmeth.3289

10.1038/nature15729

10.1016/j.cell.2015.07.047

10.1038/nbt0717-606

10.1371/journal.pgen.1004919

10.1038/ng.3166

10.1186/jbiol186

10.4161/cc.6.3.3796

10.1016/j.cell.2014.10.050

10.1093/brain/awt097

10.1016/j.gde.2013.11.002

10.1016/j.cell.2015.04.013

10.1038/nrd.2016.29

10.1126/science.aaf4382

10.1016/j.ajhg.2017.07.014

10.1007/s00439-017-1779-6

10.1016/S0168-9525(03)00195-1

10.1073/pnas.1618657114

10.1038/nrm2918

10.1038/nrg.2017.101

10.1371/journal.pcbi.1000002

10.1093/hmg/ddv309

10.1212/WNL.0b013e31829d85c0

10.1039/C4MB00290C

10.1242/dmm.013474

10.1016/j.cell.2011.02.016

10.1016/j.ajhg.2017.06.005

10.1038/ng1581

10.1016/j.cell.2006.09.043

10.1038/nbt.2106

10.1002/humu.22

10.1002/humu.10197

10.1073/pnas.91.18.8324

10.1073/pnas.90.15.7074

10.1073/pnas.0504641102

10.1016/j.jmb.2005.08.020

Zhong Q., 2009, Mol. Syst. Biol., 5, 321, 10.1038/msb.2009.80

10.1146/annurev.biophys.37.032807.125817