Mạng lưới chất xám hình thái bị rối loạn trong giai đoạn sớm của bệnh Parkinson
Tóm tắt
Mặc dù các nghiên cứu về tương quan cấu trúc đã nâng cao hiểu biết về những thay đổi não bộ trong bệnh Parkinson (PD), nhưng mối quan hệ giữa não bộ và hành vi chưa được khảo sát ở cấp độ cá nhân. Nghiên cứu này điều tra tổ chức topo của các mạng lưới chất xám (GM), mối quan hệ của chúng với mức độ nghiêm trọng của bệnh và giá trị chẩn đoán hình ảnh tiềm năng trong PD. Năm mươi bốn bệnh nhân PD giai đoạn sớm và 54 người điều khiển khỏe mạnh (HC) đã trải qua chụp cộng hưởng từ T1 có trọng số cấu trúc. Các mạng lưới GM đã được xây dựng bằng cách ước lượng sự tương đồng giữa các vùng trong phân bố thể tích GM vùng bằng cách sử dụng thước đo phân kỳ Kullback–Leibler. Kết quả được phân tích bằng lý thuyết đồ thị và thống kê dựa trên mạng (NBS), và mối quan hệ với mức độ nghiêm trọng của bệnh đã được đánh giá. Các phân tích máy vector hỗ trợ thăm dò được thực hiện để phân biệt bệnh nhân PD với HC và các kiểu vận động khác nhau. So với HC, các mạng lưới GM trong PD cho thấy hệ số cụm cao hơn (
Từ khóa
#bệnh Parkinson #mạng lưới chất xám #chẩn đoán hình ảnh #tổ chức topo #phản ứng vận độngTài liệu tham khảo
Aarabi MH, Kamalian A, Mohajer B, Shandiz MS, Eqlimi E, Shojaei A, Safabakhsh H (2015) A statistical approach in human brain connectome of Parkinson Disease in elderly people using Network Based Statistics. Conf Proc IEEE Eng Med Biol Soc 2015:4310–4313. https://doi.org/10.1109/EMBC.2015.7319348
Abbasi N, Mohajer B, Abbasi S, Hasanabadi P, Abdolalizadeh A, Rajimehr R (2018) Relationship between cerebrospinal fluid biomarkers and structural brain network properties in Parkinson’s disease. Mov Disord 33(3):431–439. https://doi.org/10.1002/mds.27284
Alexander-Bloch A, Giedd JN, Bullmore E (2013) Imaging structural co-variance between human brain regions. Nat Rev Neurosci 14(5):322–336. https://doi.org/10.1038/nrn3465
Amboni M, Tessitore A, Esposito F, Santangelo G, Picillo M, Vitale C, Giordano A, Erro R, de Micco R, Corbo D, Tedeschi G, Barone P (2015) Resting-state functional connectivity associated with mild cognitive impairment in Parkinson’s disease. J Neurol 262(2):425–434. https://doi.org/10.1007/s00415-014-7591-5
Amunts K, Lepage C, Borgeat L, Mohlberg H, Dickscheid T, Rousseau ME, Bludau S, Bazin PL, Lewis LB, Oros-Peusquens AM, Shah NJ, Lippert T, Zilles K, Evans AC (2013) BigBrain: an ultrahigh-resolution 3D human brain model. Science 340(6139):1472–1475. https://doi.org/10.1126/science.1235381
Arslan S, Ktena SI, Makropoulos A, Robinson EC, Rueckert D, Parisot S (2018) Human brain mapping: a systematic comparison of parcellation methods for the human cerebral cortex. Neuroimage 170:5–30. https://doi.org/10.1016/j.neuroimage.2017.04.014
Ashburner J (2007) A fast diffeomorphic image registration algorithm. Neuroimage 38(1):95–113. https://doi.org/10.1016/j.neuroimage.2007.07.007
Ashburner J, Friston KJ (2000) Voxel-based morphometry–the methods. Neuroimage 11(6 Pt 1):805–821. https://doi.org/10.1006/nimg.2000.0582
Atkinson-Clement C, Pinto S, Eusebio A, Coulon O (2017) Diffusion tensor imaging in Parkinson’s disease: Review and meta-analysis. Neuroimage Clin 16:98–110. https://doi.org/10.1016/j.nicl.2017.07.011
Bassett DS, Bullmore E, Verchinski BA, Mattay VS, Weinberger DR, Meyer-Lindenberg A (2008) Hierarchical organization of human cortical networks in health and schizophrenia. J Neurosci 28(37):9239–9248. https://doi.org/10.1523/JNEUROSCI.1929-08.2008
Berman BD, Smucny J, Wylie KP, Shelton E, Kronberg E, Leehey M, Tregellas JR (2016) Levodopa modulates small-world architecture of functional brain networks in Parkinson’s disease. Mov Disord 31(11):1676–1684. https://doi.org/10.1002/mds.26713
Burnham K, AnderSon D (2002) Model selection and multimodel inference: a practical information-theoretic approach. Springer, New York
Caminiti SP, Siri C, Guidi L, Antonini A, Perani D (2015) The neural correlates of spatial and object working memory in elderly and Parkinson’s disease subjects. Behav Neurol 2015:123636. https://doi.org/10.1155/2015/123636
Chang YT, Lu CH, Wu MK, Hsu SW, Huang CW, Chang WN, Lien CY, Lee JJ, Chang CC (2017) Salience network and depressive severities in Parkinson’s disease with mild cognitive impairment: a structural covariance network analysis. Front Aging Neurosci 9:417. https://doi.org/10.3389/fnagi.2017.00417
Chen S, Chan P, Sun S, Chen H, Zhang B, Le W, Liu C, Peng G, Tang B, Wang L, Cheng Y, Shao M, Liu Z, Wang Z, Chen X, Wang M, Wan X, Shang H, Liu Y, Xu P, Wang J, Feng T, Chen X, Hu X, Xie A, Xiao Q (2016) The recommendations of Chinese Parkinson’s disease and movement disorder society consensus on therapeutic management of Parkinson’s disease. Transl Neurodegener 5:12. https://doi.org/10.1186/s40035-016-0059-z
Chou KH, Lin WC, Lee PL, Tsai NW, Huang YC, Chen HL, Cheng KY, Chen PC, Wang HC, Lin TK, Li SH, Lin WM, Lu CH, Lin CP (2015) Structural covariance networks of striatum subdivision in patients with Parkinson’s disease. Hum Brain Mapp 36(4):1567–1584. https://doi.org/10.1002/hbm.22724
Cortes C, Vapnik V (1995) Support-vector networks. Mach Learn 20(3):273–297. https://doi.org/10.1007/BF00994018
Craddock RC, Jbabdi S, Yan CG, Vogelstein JT, Castellanos FX, Di Martino A, Kelly C, Heberlein K, Colcombe S, Milham MP (2013) Imaging human connectomes at the macroscale. Nat Methods 10(6):524–539. https://doi.org/10.1038/nmeth.2482
de Schipper LJ, Hafkemeijer A, van der Grond J, Marinus J, Henselmans JML, van Hilten JJ (2018) Altered whole-brain and network-based functional connectivity in Parkinson’s disease. Front Neurol 9:419. https://doi.org/10.3389/fneur.2018.00419
Fang J, Chen H, Cao Z, Jiang Y, Ma L, Ma H, Feng T (2017) Impaired brain network architecture in newly diagnosed Parkinson’s disease based on graph theoretical analysis. Neurosci Lett 657:151–158. https://doi.org/10.1016/j.neulet.2017.08.002
Folstein MF, Robins LN, Helzer JE (1983) The mini-mental state examination. Arch Gen Psychiatry 40(7):812. https://doi.org/10.1001/archpsyc.1983.01790060110016
Galantucci S, Agosta F, Stefanova E, Basaia S, van den Heuvel MP, Stojkovic T, Canu E, Stankovic I, Spica V, Copetti M, Gagliardi D, Kostic VS, Filippi M (2017) Structural brain connectome and cognitive impairment in Parkinson disease. Radiology 283(2):515–525. https://doi.org/10.1148/radiol.2016160274
Goetz CG, Tilley BC, Shaftman SR, Stebbins GT, Fahn S, Martinez-Martin P, Poewe W, Sampaio C, Stern MB, Dodel R, Dubois B, Holloway R, Jankovic J, Kulisevsky J, Lang AE, Lees A, Leurgans S, LeWitt PA, Nyenhuis D, Olanow CW, Rascol O, Schrag A, Teresi JA, van Hilten JJ, LaPelle N, Movement Disorder Society URTF (2008) Movement Disorder Society-sponsored revision of the Unified Parkinson’s Disease Rating Scale (MDS-UPDRS): scale presentation and clinimetric testing results. Mov Disord 23(15):2129–2170. https://doi.org/10.1002/mds.22340
Goldman JG, Stebbins GT, Dinh V, Bernard B, Merkitch D, deToledo-Morrell L, Goetz CG (2014) Visuoperceptive region atrophy independent of cognitive status in patients with Parkinson’s disease with hallucinations. Brain 137(Pt 3):849–859. https://doi.org/10.1093/brain/awt360
Golland P, Fischl B (2003) Permutation tests for classification: towards statistical significance in image-based studies. Inf Process Med Imaging 18:330–341. https://doi.org/10.1007/978-3-540-45087-0_28
Gong Q (2020) Psychoradiology, Neuroimaging Clinics of North America, vol 30. Elsevier Inc, New York, pp 1–123. https://www.elsevier.com/books/psychoradiology-an-issue-of-neuroimaging-clinics-of-north-america/gong/978-0-323-70886-9
Gottlich M, Munte TF, Heldmann M, Kasten M, Hagenah J, Kramer UM (2013) Altered resting state brain networks in Parkinson’s disease. PLoS ONE 8(10):e77336. https://doi.org/10.1371/journal.pone.0077336
He Y, Chen ZJ, Evans AC (2007) Small-world anatomical networks in the human brain revealed by cortical thickness from MRI. Cereb Cortex 17(10):2407–2419. https://doi.org/10.1093/cercor/bhl149
He Y, Dagher A, Chen Z, Charil A, Zijdenbos A, Worsley K, Evans A (2009) Impaired small-world efficiency in structural cortical networks in multiple sclerosis associated with white matter lesion load. Brain 132(Pt 12):3366–3379. https://doi.org/10.1093/brain/awp089
Hoehn MM, Yahr MD (1967) Parkinsonism: onset, progression and mortality. Neurology 17(5):427–442. https://doi.org/10.1212/wnl.17.5.427
Hu J, Xiao C, Gong D, Qiu C, Liu W, Zhang W (2019) Regional homogeneity analysis of major Parkinson’s disease subtypes based on functional magnetic resonance imaging. Neurosci Lett 706:81–87. https://doi.org/10.1016/j.neulet.2019.05.013
Huang X, Gong Q, Sweeney JA, Biswal BB (2019) Progress in psychoradiology, the clinical application of psychiatric neuroimaging. Brit J Radiol 92(1101):20181000. https://doi.org/10.1259/bjr.20181000
Hughes AJ, Daniel SE, Kilford L, Lees AJ (1992) Accuracy of clinical diagnosis of idiopathic Parkinson’s disease: a clinico-pathological study of 100 cases. J Neurol Neurosurg Psychiatry 55(3):181–184. https://doi.org/10.1136/jnnp.55.3.181
Jankovic J (2008) Parkinson’s disease: clinical features and diagnosis. J Neurol Neurosurg Psychiatry 79(4):368–376. https://doi.org/10.1136/jnnp.2007.131045
Ji GJ, Hu P, Liu TT, Li Y, Chen X, Zhu C, Tian Y, Chen X, Wang K (2018) Functional connectivity of the corticobasal ganglia-thalamocortical network in Parkinson disease: a systematic review and meta-analysis with cross-validation. Radiology 287(3):973–982. https://doi.org/10.1148/radiol.2018172183
Kamagata K, Zalesky A, Hatano T, Di Biase MA, El Samad O, Saiki S, Shimoji K, Kumamaru KK, Kamiya K, Hori M, Hattori N, Aoki S, Pantelis C (2018) Connectome analysis with diffusion MRI in idiopathic Parkinson’s disease: evaluation using multi-shell, multi-tissue, constrained spherical deconvolution. Neuroimage Clin 17:518–529. https://doi.org/10.1016/j.nicl.2017.11.007
Khairnar A, Ruda-Kucerova J, Szabo N, Drazanova E, Arab A, Hutter-Paier B, Neddens J, Latta P, Starcuk Z Jr, Rektorova I (2017) Early and progressive microstructural brain changes in mice overexpressing human alpha-Synuclein detected by diffusion kurtosis imaging. Brain Behav Immun 61:197–208. https://doi.org/10.1016/j.bbi.2016.11.027
Knossalla F, Kohl Z, Winkler J, Schwab S, Schenk T, Engelhorn T, Doerfler A, Golitz P (2018) High-resolution diffusion tensor-imaging indicates asymmetric microstructural disorganization within substantia nigra in early Parkinson’s disease. J Clin Neurosci 50:199–202. https://doi.org/10.1016/j.jocn.2018.01.023
Kong XZ, Liu Z, Huang L, Wang X, Yang Z, Zhou G, Zhen Z, Liu J (2015) Mapping individual brain networks using statistical similarity in regional morphology from MRI. PLoS ONE 10(11):e0141840. https://doi.org/10.1371/journal.pone.0141840
Kong XZ, Wang X, Huang L, Pu Y, Yang Z, Dang X, Zhen Z, Liu J (2014) Measuring individual morphological relationship of cortical regions. J Neurosci Methods 237:103–107. https://doi.org/10.1016/j.jneumeth.2014.09.003
Lei D, Pinaya WHL, van Amelsvoort T, Marcelis M, Donohoe G, Mothersill DO, Corvin A, Gill M, Vieira S, Huang X, Lui S, Scarpazza C, Young J, Arango C, Bullmore E, Gong Q, McGuire P, Mechelli A (2020) Detecting schizophrenia at the level of the individual: relative diagnostic value of whole-brain images, connectome-wide functional connectivity and graph-based metrics. Psychol Med 50(11):1852-1861. https://doi.org/10.1017/S0033291719001934
Li X, Xing Y, Schwarz ST, Auer DP (2017) Limbic grey matter changes in early Parkinson’s disease. Hum Brain Mapp 38(7):3566–3578. https://doi.org/10.1002/hbm.23610
Liao X, Vasilakos AV, He Y (2017) Small-world human brain networks: perspectives and challenges. Neurosci Biobehav Rev 77:286–300. https://doi.org/10.1016/j.neubiorev.2017.03.018
Luo CY, Guo XY, Song W, Chen Q, Cao B, Yang J, Gong QY, Shang HF (2015) Functional connectome assessed using graph theory in drug-naive Parkinson’s disease. J Neurol 262(6):1557–1567. https://doi.org/10.1007/s00415-015-7750-3
Ma LY, Chen XD, He Y, Ma HZ, Feng T (2017a) Disrupted brain network hubs in subtype-specific Parkinson’s disease. Eur Neurol 78(3–4):200–209. https://doi.org/10.1159/000477902
Ma Q, Huang B, Wang J, Seger C, Yang W, Li C, Wang J, Feng J, Weng L, Jiang W, Huang R (2017b) Altered modular organization of intrinsic brain functional networks in patients with Parkinson’s disease. Brain Imaging Behav 11(2):430–443. https://doi.org/10.1007/s11682-016-9524-7
Marie RM, Lozza C, Chavoix C, Defer GL, Baron JC (2007) Functional imaging of working memory in Parkinson’s disease: compensations and deficits. J Neuroimaging 17(4):277–285. https://doi.org/10.1111/j.1552-6569.2007.00152.x
McMillan CT, Wolk DA (2016) Presence of cerebral amyloid modulates phenotype and pattern of neurodegeneration in early Parkinson’s disease. J Neurol Neurosurg Psychiatry 87(10):1112–1122. https://doi.org/10.1136/jnnp-2015-312690
Menon V (2011) Large-scale brain networks and psychopathology: a unifying triple network model. Trends Cogn Sci 15(10):483–506. https://doi.org/10.1016/j.tics.2011.08.003
Meppelink AM, de Jong BM, Renken R, Leenders KL, Cornelissen FW, van Laar T (2009) Impaired visual processing preceding image recognition in Parkinson’s disease patients with visual hallucinations. Brain 132(Pt 11):2980–2993. https://doi.org/10.1093/brain/awp223
Mishra VR, Sreenivasan KR, Yang Z, Zhuang X, Cordes D, Mari Z, Litvan I, Fernandez HH, Eidelberg D, Ritter A, Cummings JL, Walsh RR (2020) Unique white matter structural connectivity in early-stage drug-naive Parkinson disease. Neurology 94(8):e774–e784. https://doi.org/10.1212/WNL.0000000000008867
Nan J, Zhang L, Zhu F, Tian X, Zheng Q, Deneen KM, Liu J, Zhang M (2016) Topological alterations of the intrinsic brain network in patients with functional dyspepsia. J Neurogastroenterol Motil 22(1):118–128. https://doi.org/10.5056/jnm15118
Navalpotro-Gomez I, Kim J, Paz-Alonso PM, Delgado-Alvarado M, Quiroga-Varela A, Jimenez-Urbieta H, Carreiras M, Strafella AP, Rodriguez-Oroz MC (2020) Disrupted salience network dynamics in Parkinson’s disease patients with impulse control disorders. Parkinsonism Relat Disord 70:74–81. https://doi.org/10.1016/j.parkreldis.2019.12.009
Nigro S, Riccelli R, Passamonti L, Arabia G, Morelli M, Nistico R, Novellino F, Salsone M, Barbagallo G, Quattrone A (2016) Characterizing structural neural networks in de novo Parkinson disease patients using diffusion tensor imaging. Hum Brain Mapp 37(12):4500–4510. https://doi.org/10.1002/hbm.23324
Oosterwijk CS, Vriend C, Berendse HW, van der Werf YD, van den Heuvel OA (2018) Anxiety in Parkinson’s disease is associated with reduced structural covariance of the striatum. J Affect Disord 240:113–120. https://doi.org/10.1016/j.jad.2018.07.053
Pan P, Zhan H, Xia M, Zhang Y, Guan D, Xu Y (2017) Aberrant regional homogeneity in Parkinson’s disease: a voxel-wise meta-analysis of resting-state functional magnetic resonance imaging studies. Neurosci Biobehav Rev 72:223–231. https://doi.org/10.1016/j.neubiorev.2016.11.018
Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, Blondel M, Prettenhofer P, Weiss R, Dubourg V, Vanderplas J, Passos A, Cournapeau D, Brucher M, Perrot M, Duchesnay É (2012) Scikit-learn: machine learning in python. J Mach Learn Res 12(10):2825–2830
Pereira JB, Aarsland D, Ginestet CE, Lebedev AV, Wahlund LO, Simmons A, Volpe G, Westman E (2015) Aberrant cerebral network topology and mild cognitive impairment in early Parkinson’s disease. Hum Brain Mapp 36(8):2980–2995. https://doi.org/10.1002/hbm.22822
Rubinov M, Sporns O (2010) Complex network measures of brain connectivity: uses and interpretations. Neuroimage 52(3):1059–1069. https://doi.org/10.1016/j.neuroimage.2009.10.003
Sandrone S, Catani M (2013) Journal Club. Default-mode network connectivity in cognitively unimpaired patients with Parkinson disease. Neurology 81(23):e172-175. https://doi.org/10.1212/01.wnl.0000436943.62904.09
Sang L, Zhang J, Wang L, Zhang J, Zhang Y, Li P, Wang J, Qiu M (2015) Alteration of brain functional networks in early-stage Parkinson’s disease: a resting-state fMRI study. PLoS ONE 10(10):e0141815. https://doi.org/10.1371/journal.pone.0141815
Seidlitz J, Vasa F, Shinn M, Romero-Garcia R, Whitaker KJ, Vertes PE, Wagstyl K, Kirkpatrick Reardon P, Clasen L, Liu S, Messinger A, Leopold DA, Fonagy P, Dolan RJ, Jones PB, Goodyer IM, Consortium N, Raznahan A, Bullmore ET (2018) Morphometric similarity networks detect microscale cortical organization and predict inter-individual cognitive variation. Neuron 97(1):231–247. https://doi.org/10.1016/j.neuron.2017.11.039
Shah A, Lenka A, Saini J, Wagle S, Naduthota RM, Yadav R, Pal PK, Ingalhalikar M (2017) Altered brain wiring in Parkinson’s disease: a structural connectome-based analysis. Brain Connect 7(6):347–356. https://doi.org/10.1089/brain.2017.0506
Sporns O, Tononi G, Kotter R (2005) The human connectome: a structural description of the human brain. PLoS Comput Biol 1(4):e42. https://doi.org/10.1371/journal.pcbi.0010042
Strogatz SH (2001) Exploring complex networks. Nature 410(6825):268–276. https://doi.org/10.1038/35065725
Sun H, Chen Y, Huang Q, Lui S, Huang X, Shi Y, Xu X, Sweeney JA, Gong Q (2018) Psychoradiologic utility of MR imaging for diagnosis of attention deficit hyperactivity disorder: a radiomics analysis. Radiology 287(2):620–630. https://doi.org/10.1148/radiol.2017170226
Suo X, Lei D, Li K, Chen F, Li F, Li L, Huang X, Lui S, Li L, Kemp GJ, Gong Q (2015) Disrupted brain network topology in pediatric posttraumatic stress disorder: a resting-state fMRI study. Hum Brain Mapp 36(9):3677–3686. https://doi.org/10.1002/hbm.22871
Suo X, Lei D, Li L, Li W, Dai J, Wang S, He M, Zhu H, Kemp GJ, Gong Q (2018) Psychoradiological patterns of small-world properties and a systematic review of connectome studies of patients with 6 major psychiatric disorders. J Psychiatry Neurosci 43(5):170214. https://doi.org/10.1503/jpn.170214
Suo X, Lei D, Li N, Cheng L, Chen F, Wang M, Kemp GJ, Peng R, Gong Q (2017) Functional brain connectome and its relation to Hoehn and Yahr stage in Parkinson disease. Radiology 285(3):904–913. https://doi.org/10.1148/radiol.2017162929
Suo X, Lei D, Li W, Li L, Dai J, Wang S, Li N, Cheng L, Peng R, Kemp GJ, Gong Q (2021) Altered white matter microarchitecture in Parkinson's disease: a voxel-based meta-analysis of diffusion tensor imaging studies. Front Med 15(1):125–138. https://doi.org/10.1007/s11684-019-0725-5
Tessitore A, Esposito F, Vitale C, Santangelo G, Amboni M, Russo A, Corbo D, Cirillo G, Barone P, Tedeschi G (2012) Default-mode network connectivity in cognitively unimpaired patients with Parkinson disease. Neurology 79(23):2226–2232. https://doi.org/10.1212/WNL.0b013e31827689d6
Tessitore A, Giordano A, De Micco R, Russo A, Tedeschi G (2014) Sensorimotor connectivity in Parkinson’s disease: the role of functional neuroimaging. Front Neurol 5:180. https://doi.org/10.3389/fneur.2014.00180
Tijms BM, Series P, Willshaw DJ, Lawrie SM (2012) Similarity-based extraction of individual networks from gray matter MRI scans. Cereb Cortex 22(7):1530–1541. https://doi.org/10.1093/cercor/bhr221
Tinaz S, Lauro PM, Ghosh P, Lungu C, Horovitz SG (2017) Changes in functional organization and white matter integrity in the connectome in Parkinson’s disease. Neuroimage Clin 13:395–404. https://doi.org/10.1016/j.nicl.2016.12.019
Tomlinson CL, Stowe R, Patel S, Rick C, Gray R, Clarke CE (2010) Systematic review of levodopa dose equivalency reporting in Parkinson’s disease. Mov Disord 25(15):2649–2653. https://doi.org/10.1002/mds.23429
Tzourio-Mazoyer N, Landeau B, Papathanassiou D, Crivello F, Etard O, Delcroix N, Mazoyer B, Joliot M (2002) Automated anatomical labeling of activations in SPM using a macroscopic anatomical parcellation of the MNI MRI single-subject brain. Neuroimage 15(1):273–289. https://doi.org/10.1006/nimg.2001.0978
Van Essen DC (1997) A tension-based theory of morphogenesis and compact wiring in the central nervous system. Nature 385(6614):313–318. https://doi.org/10.1038/385313a0
van Wijk BC, Stam CJ, Daffertshofer A (2010) Comparing brain networks of different size and connectivity density using graph theory. PLoS ONE 5(10):e13701. https://doi.org/10.1371/journal.pone.0013701
Vancea R, Simonyan K, Petracca M, Brys M, Di Rocco A, Ghilardi MF, Inglese M (2019) Cognitive performance in mid-stage Parkinson’s disease: functional connectivity under chronic antiparkinson treatment. Brain Imaging Behav 13(1):200–209. https://doi.org/10.1007/s11682-017-9765-0
Wang H, Jin X, Zhang Y, Wang J (2016) Single-subject morphological brain networks: connectivity mapping, topological characterization and test-retest reliability. Brain Behav 6(4):e00448. https://doi.org/10.1002/brb3.448
Wang J, Wang X, Xia M, Liao X, Evans A, He Y (2015) GRETNA: a graph theoretical network analysis toolbox for imaging connectomics. Front Hum Neurosci 9:386. https://doi.org/10.3389/fnhum.2015.00386
Watts DJ, Strogatz SH (1998) Collective dynamics of “small-world” networks. Nature 393(6684):440–442. https://doi.org/10.1038/30918
Weingarten CP, Sundman MH, Hickey P, Chen NK (2015) Neuroimaging of Parkinson’s disease: expanding views. Neurosci Biobehav Rev 59:16–52. https://doi.org/10.1016/j.neubiorev.2015.09.007
Wen MC, Heng HSE, Hsu JL, Xu Z, Liew GM, Au WL, Chan LL, Tan LCS, Tan EK (2017a) Structural connectome alterations in prodromal and de novo Parkinson’s disease patients. Parkinsonism Relat Disord 45:21–27. https://doi.org/10.1016/j.parkreldis.2017.09.019
Wen MC, Xu Z, Lu Z, Chan LL, Tan EK, Tan LCS (2017b) Microstructural network alterations of olfactory dysfunction in newly diagnosed Parkinson’s disease. Sci Rep 7(1):12559. https://doi.org/10.1038/s41598-017-12947-7
Wu Q, Gao Y, Liu AS, Xie LZ, Qian L, Yang XG (2018) Large-scale cortical volume correlation networks reveal disrupted small world patterns in Parkinson’s disease. Neurosci Lett 662:374–380. https://doi.org/10.1016/j.neulet.2017.10.032
Xu J, Zhang J, Zhang J, Wang Y, Zhang Y, Wang J, Li G, Hu Q, Zhang Y (2017) Abnormalities in structural covariance of cortical gyrification in Parkinson’s disease. Front Neuroanat 11:12. https://doi.org/10.3389/fnana.2017.00012
Xu X, Guan X, Guo T, Zeng Q, Ye R, Wang J, Zhong J, Xuan M, Gu Q, Huang P, Pu J, Zhang B, Zhang M (2018) Brain atrophy and reorganization of structural network in Parkinson’s disease with hemiparkinsonism. Front Hum Neurosci 12:117. https://doi.org/10.3389/fnhum.2018.00117
Zalesky A, Fornito A, Bullmore ET (2010) Network-based statistic: identifying differences in brain networks. Neuroimage 53(4):1197–1207. https://doi.org/10.1016/j.neuroimage.2010.06.041
Zhang D, Liu X, Chen J, Liu B (2014) Distinguishing patients with Parkinson’s disease subtypes from normal controls based on functional network regional efficiencies. PLoS ONE 9(12):e115131. https://doi.org/10.1371/journal.pone.0115131
Zhang D, Wang J, Liu X, Chen J, Liu B (2015a) Aberrant brain network efficiency in Parkinson’s disease patients with tremor: a multi-modality study. Front Aging Neurosci 7:169. https://doi.org/10.3389/fnagi.2015.00169
Zhang DL, Liu X, Chen J, Liu B, Wang JH (2015b) Widespread increase of functional connectivity in Parkinson’s disease with tremor: a resting-state fMRI study. Front Aging Neurosci 7:6. https://doi.org/10.3389/fnagi.2015.00006
Zhang J, Wang J, Wu Q, Kuang W, Huang X, He Y, Gong Q (2011) Disrupted brain connectivity networks in drug-naive, first-episode major depressive disorder. Biol Psychiatry 70(4):334–342. https://doi.org/10.1016/j.biopsych.2011.05.018
Zhang Y, Lin L, Lin CP, Zhou Y, Chou KH, Lo CY, Su TP, Jiang T (2012) Abnormal topological organization of structural brain networks in schizophrenia. Schizophr Res 141(2–3):109–118. https://doi.org/10.1016/j.schres.2012.08.021