Nội dung được dịch bởi AI, chỉ mang tính chất tham khảo
Phim nền carbon nanotube dùng một lần để đánh giá nhanh chóng và đáng tin cậy tổng α1-glycoprotein acid trong huyết thanh người sử dụng kỹ thuật voltammetry sóng vuông chuyển nhượng hấp phụ
Tóm tắt
Glycoprotein acid alpha-1 (AGP) là một glycoprotein huyết thanh có nồng độ tăng gấp hai hoặc ba lần trong bệnh tật hoặc chấn thương. Điều này làm cho nó trở thành một dấu ấn sinh học tiềm năng cho các bệnh viêm ruột và nhiễm trùng huyết. Do đó, có nhu cầu về các phương pháp phân tích nhanh chóng, đơn giản và rẻ tiền cho chẩn đoán, tiên lượng và theo dõi những bệnh này. Trong nghiên cứu này, chúng tôi đề xuất một phương pháp điện hóa đơn giản dựa trên phim nền carbon nanotube (CNSFs) để xác định tổng AGP trong các mẫu huyết thanh. Đầu tiên, AGP được gắn với một nhãn điện hóa (hợp chất osmium(VI)), sau đó tổng lượng AGP được định lượng bằng kỹ thuật voltammetry sóng vuông chuyển nhượng hấp phụ (AdTSWV). Phim nền carbon nanotube nhiều vách (MWSFs) đã mang lại hiệu suất phân tích tốt nhất về độ nhạy với giới hạn phát hiện tốt là 0,6 mg L−1 cho việc xác định AGP trong các mẫu huyết thanh, trong thời gian chưa đến 20 phút. Một phương pháp hiệu chuẩn AGP đơn giản hơn và chiến lược phân tích mẫu huyết thanh tuần tự với độ chính xác tốt (81%) và độ lặp lại xuất sắc (RSD < 1%) cũng được đề xuất để đáp ứng các yêu cầu tại chỗ/cần thiết.
Từ khóa
#α1-glycoprotein acid #AGP #huyết thanh #điện hóa #kỹ thuật voltammetryTài liệu tham khảo
Puerta A, Díez-Masa JC, Martín-Álvarez PJ, Martín-Ventura JL, Barbas C, Tuñón J, et al. Study of the capillary electrophoresis profile of intact α-1-acid glycoprotein isoforms as a biomarker of atherothrombosis. Analyst. 2011;136:816–22.
Zhang C, Hage DS. Glycoform analysis of alpha1-acid glycoprotein by capillary electrophoresis. J Chromatogr A. 2016;1475:102–9.
Lacunza I, Sanz Perucha J, Díez-Masa JC, Frutos M. CZE of human alpha-1-acid glycoprotein for qualitative and quantitative comparison of samples from different pathological conditions. Electrophoresis. 2006;27:4205–14.
Shiyan SD, Bovin NV. Carbohydrate composition and immunomodulatory activity of different glycoforms of α1-acid glycoprotein. Glycoconj J. 1997;14:631–8.
Beeram S, Bi C, Zheng X, Hage DS. Chromatographic studies of drug interactions with alpha1-acid glycoprotein by ultrafast affinity extraction and peak profiling. J Chromatogr A. 2017;1497:92–101.
Vermeire S, Van Assche G, Rutgeerts P. Oratory markers in IBD: magic, or unnecessary toys? Gut. 2006;55:426–31.
Ipek IO, Saracoglu M, Bozaykut A. α1-Acid glycoprotein for the early diagnosis of neonatal sepsis. J. Matern.-Fetal Neonatal Med. 2010;23:617–21.
Brignola C, Campieri M, Bazzocchi G, et al. A laboratory index for predicting relapse in asymptomatic patients with Crohn’s disease. Gastroenterology. 1986;91:1490–4.
Miranda-García P, Chaparro M, Gisbert JP. Correlation between serologicalbiomarkers and endoscopic activity in patients with inflammatory bowel disease. Gastroenterol Hepatol. 2016;39:508–15.
Benitez JM, Meuwis MA, Reenaers C, Van Kemseke C, Meunier P, Louis E. Role of endoscopy, cross-sectional imaging and biomarkers in Crohn’s disease monitoring. Gut. 2013;62:1806–16.
Suzuki S. Highly sensitive methods using liquid chromatography and capillary electrophoresis for quantitative analysis of glycoprotein glycans. Chromatography. 2014;35:1–22.
Zhang C, Bi C, Clarke W, Hage DS. Glycoform analysis of alpha1-acid glycoprotein based on capillary electrophoresis and electrophoretic injection. J Chromatogr A. 2017;1523:114–22.
Yazawa S, Yokobori T, Kaira K, Kuwano H, Asao T. A new enzyme immunoassay for the determination of highly sialylated and fucosylated human α1-acid glycoprotein as a biomarker of tumorigenesis. Clin Chim Acta. 2018;478:120–8.
Christiansen MS, Blirup-Jensen S, Foged L, Larsen M, Magid E. A particle-enhanced turbidimetric immunoassay for quantitative determination of orosomucoid in urine: development, validation and reference values. Clin Chem Lab Med. 2004;42:1168–77.
Escarpa A. Food electroanalysis: sense and simplicity. Chem Record. 2012;12:72–91.
Suprun EV, Shumyantseva VV, Archakov AI. Protein electrochemistry: Application in medicine. Areview. Electrochim Acta. 2014;140:72–82.
Palecek E, Tkac J, Bartosik M, Bertok T, Ostatna V, Palecek J. Electrochemistry of nonconjugated Proteins and Glycoproteins. Toward sensors for biomedicine and glycomics. Chem Rev. 2015;115:2045–108.
Bertok T, Klukova L, Sediva A, Kasak P, Semak V, Micusik M, et al. Ultrasensitive Impedimetric lectin biosensors with efficient antifouling properties applied in glycoprofiling of human serum samples. Anal Chem. 2013;85:7324–32.
Yang C, Gu B, Xu C, Xiaoyong X. Self-assembled ZnO quantum dot bioconjugates for direct electrochemical determination of allergen. J Electroanal Chem. 2011;660:97–100.
Mayorga-Martinez CC, Latiff NM, Sheng Eng AY, Sofer Z, Pumera M. Black phosphorus nanoparticle labels for immunoassays via hydrogen evolution reaction mediation. Anal Chem. 2016;88:10074–9.
Toh RJ, Mayorga-Martinez CC, Sofer Z, Pumera M. MoSe2 nanolabels for electrochemical immunoassays. Anal Chem. 2016;88:12204–9.
Trefulka M, Paleček E. Voltammetry of Os(VI)-modified polysaccharides at carbon electrodes. Electroanalysis. 2009;21:1763–6.
Trefulka M, Paleček E. Direct chemical modification and voltammetric detection of glycans in glycoproteins. Electrochem Commun. 2014;48:52–5.
Trefulka M, Paleček E. Modification of poly- and oligosaccharides with Os(VI) pyridine. Voltammetry of the Os(VI) adducts obtained by ligand exchange. Electroanalysis. 2013;25:1813–7.
Sierra T, González MC, Moreno B, Crevillen AG, Escarpa A. Total α1-acid glycoprotein determination in serum samples using disposable screen-printed electrodes and osmium (VI) as electrochemical tag. Talanta. 2018;180:206–10.
Martin A, Escarpa A. Graphene: the cutting-edge interaction between chemistry and electrochemistry. Trends Anal Chem. 2014;56:13–26.
Zhang Q, Wu Z, Li N, Pu Y, Wang B, Zhang T, et al. Advanced review of graphene-based nanomaterials in drug delivery systems: synthesis, modification, toxicity and application. Mat Sci Eng C. 2017;77:1363–75.
Kuila T, Bose S, Khanra P, Kumar A, Nam M, Kim H, et al. Recent advances in graphene-based biosensors. Biosens Bioelectron. 2011;26:4637–48.
Pumera M. Graphene in biosensing. Mat Today. 2011;14:308–15.
Pumera M, Ambrosi A, Bonanni A, Khim Chng EL, Ling Poh H. Graphene for electrochemical sensing and biosensing. Trends Anal Chem. 2010;29:954–65.
Power AC, Gorey B, Chandra S, Chapman J. Carbon nanomaterials and their application to electrochemical sensors: a review. Nanotechn Rev. 2017;7:1–48.
Agüí L, Yáñez-Sedeño P, Pingarrón JM. Role of carbon nanotubes in electroanalytical chemistry. A review. Anal Chim Acta. 2008;622:11–47.
Gomez FJ, Martín A, Silva MF, Escarpa A. Screen-printed electrodes modified with carbon nanotubes or graphene for simultaneous determination of melatonin and serotonin. Microchim Acta. 2015;182:1925–31.
Merkoçi A, Pumera M, Llopis X, Pérez B, del Valle M, Alegret S. New materials for electrochemical sensing VI: carbon nanotubes. Trends Anal Chem. 2005;24:826–38.
Wildgoose GG, Banks CE, Leventis HC, Compton RG. Chemically modified carbon nanotubes for use in electroanalysis. Microchim Acta. 2006;152:187–214.
Baptista FR, Belhout SA, Giordani S, Quinn SJ. Recent developments in carbon nanomaterial sensors. Chem Soc Rev. 2015;44:4433–53.
Yang Y, Yang X, Yang Y, Yuan Q. Aptamer-functionalized carbon nanomaterials electrochemical sensors for detecting cancer relevant biomolecules. Carbon. 2018;129:380–95.
Rivas GA, Rodríguez MC, Rubianes MD, Gutiérres FA, Eguíleas M, Dalmasso PR, et al. Carbon nanotubes-based electrochemical (bio)sensors for biomarkers. App. Mat. Today. 2017;9:566–88.
Wang L, Pumera M. Electrochemical catalysis at low dimensional carbons: graphene, carbon nanotubes and beyond – a review. App Mat Today. 2016;5:134–41.
Gomez FJ, Martín A, Silva MF, Escarpa A. Microchip electrophoresis-single wall carbon nanotube press-transferred electrodes for fast and reliable electrochemical sensing of melatonin and its precursors: nanoanalysis. Electrophoresis. 2015;36:1880–5.
Martín A, Vázquez L, Escarpa A. Carbon nanomaterial scaffold films with conductivity at micro and sub-micron levels. J Mat Chem A. 2016;34:13142.
Pumera M, Escarpa A. Nanomaterials as electrochemical detectors in microfluidics and CE: fundamentals, designs, and applications. Electrophoresis. 2009;30:3315–23.
Martin A, Escarpa A. Tailor designed exclusive carbon nanomaterial electrodes for off-chip and on-chip electrochemical detection. Microchim Acta. 2017;184:307–13.
García-Carmona L, Moreno-Guzmán M, Sierra T, González MC, Escarpa A. Filtered carbon nanotubes-based electrodes for rapid sensing and monitoring of L-tyrosine in plasma and whole blood samples. Sensors Actuators B Chem. 2018;259:762–7.
Stumpe M, Miller C, Morton N, Bell G, Watson DG. High-performance liquid chromatography determination of alpha1-acid glycoprotein in small volumes of plasma from neonates. J Chromatogr. 2006;831:81–4.
Cai Z, Li F, Wu P, Ji L, Zhang H, Cai C, et al. Synthesis of nitrogen-doped graphene quantum dots at low temperature for electrochemical sensing trinitrotoluene. Anal Chem. 2015;87:11803–11.
Gutierrez MC, Pico F, Rubio F, Amarilla JM, Palomares FJ, Ferrer ML, et al. PO15-PEO22-PPO15 block copolymer assisted synthesis of monolithic macro- and microporous carbon aerogels exhibiting high conductivity and remarkable capacitance. J Mater Chem. 2009;19:1236–40.
Della Pelle F, Di Battista R, Vázquez L, Palomares FJ, Del Carlo M, Sergi M, et al. Press-transferred carbon black nanoparticles for class-selective antioxidant electrochemical detection. Appl Mat Today. 2017;9:29–36.
Nagy B, Toth A, Savina I, Mikhalovsky S, Mikhalovska L, Geissler E, et al. Double probe approach to protein adsorption on porous carbon surfaces. Carbon. 2017;112:103–10.
Mahmoodi Y, Mehrnejad F, Khalifeh K. Understanding the interactions of human follicle stimulating hormone with single-walled carbon nanotubes by moleculardynamics simulation and free energy analysis. Eur Biophys J. 2018;47:49–57.