Dispersive optical solitons by Kudryashov's method
Tóm tắt
Từ khóa
Tài liệu tham khảo
Biswas, 2010, 1-Soliton solution of the K(m, n) equation with generalized evolution and time-dependent damping and dispersion, Comput. Math. Appl., 59, 2538, 10.1016/j.camwa.2010.01.013
Biswas, 2008, 1-Soliton solution of the K(m, n) equation with generalized evolution, Phys. Lett. A, 372, 4601, 10.1016/j.physleta.2008.05.002
Ma, 1993, Travelling wave solutions to a seventh order generalized KdV equation, Phys. Lett. A, 180, 221, 10.1016/0375-9601(93)90699-Z
Malfliet, 1992, Solitary wave solutions of nonlinear wave equations, Am. J. Phys., 60, 650, 10.1119/1.17120
Ma, 2010, A multiple exp-function method for nonlinear differential equations and its application, Phys. Scr., 82, 065003, 10.1088/0031-8949/82/06/065003
Kudryashov, 2005, Exact solitary waves of the Fisher equation, Phys. Lett. A, 342, 99, 10.1016/j.physleta.2005.05.025
Kudryashov, 2005, Simplest equation method to look for exact solutions of nonlinear differential equations, Chaos Soliton Fract., 24, 1217, 10.1016/j.chaos.2004.09.109
Hirota, 1971, Exact solution of the Korteweg-de Vries equation for multiple collision of solitons, Phys. Rev. Lett., 27, 1192, 10.1103/PhysRevLett.27.1192
Hirota, 2004
Ma, 2009, A transformed rational function method and exact solutions to the (3+1)-dimensional Jimbo–Miwa equation, Chaos Solitons Fract., 42, 1356, 10.1016/j.chaos.2009.03.043
Kudryashov, 1988, Exact soliton solutions of the generalized evolution equation of wave dynamics, J. Appl. Math. Mech., 52, 361, 10.1016/0021-8928(88)90090-1
Kudryashov, 2012, On one of methods for finding exact solutions of nonlinear differential equations, Commun. Nonlinear Sci. Numer. Simul., 17, 2248, 10.1016/j.cnsns.2011.10.016
Kudryashov, 1990, Exact solutions of the generalized Kuramoto–Sivashinsky equation, Phys. Lett. A., 147, 287, 10.1016/0375-9601(90)90449-X
Kudryashov, 1991, On types of nonlinear nonintegrable equations with exact solutions, Phys. Lett. A., 155, 269, 10.1016/0375-9601(91)90481-M
Kabir, 2011, Modified Kudryashov method for finding exact solitary wave solutions of higher-order nonlinear equations, Math. Meth. Appl. Sci., 34, 213, 10.1002/mma.1349
Ryabov, 2011, Application of the Kudryashov method for finding exact solutions of the high order nonlinear evolution equations, Appl. Math. Comput., 218, 3965
Ryabov, 2010, Exact solutions of the Kudryashov–Sinelshchikov equation, Appl. Math. Comput., 217, 3585
Taghizadeh, 2013, Application of Kudryashov method for high-order nonlinear Schrödinger equation, Indian J. Phys., 87, 781, 10.1007/s12648-013-0296-2
Bang, 1995, White noise in the two-dimensional nonlinear Schrödinger equation, Appl. Anal., 57, 3, 10.1080/00036819508840335
Biswas, 2009, Topological 1-soliton solution of the nonlinear Schrodinger's equation with Kerr law nonlinearity in 1 + 2 dimensions, Commun. Nonlinear Sci. Numer. Simul., 14, 2845, 10.1016/j.cnsns.2008.09.025
Borhanifar, 2010, Numerical study of nonlinear Schrödinger and coupled Schrödinger equations by differential transformation method, Opt. Commun., 283, 2026, 10.1016/j.optcom.2010.01.046
Triki, 2012, 1-soliton solution of the generalized dispersive nonlinear Schrödinger's equation with time-dependent coefficients, Adv. Sci. Lett., 16, 309, 10.1166/asl.2012.3255
Biswas, 2012, Soliton solutions of the perturbed resonant nonlinrear Schrödinger's equation with full nonlinearity by semi-inverse variational principle, Quantum Phys. Lett., 1, 79
Kohl, 2008, Optical soliton perturbation in a non-Kerr law media, Opt. Laser Technol., 40, 647, 10.1016/j.optlastec.2007.10.002
Biswas, 2012, Optical solitons and complexitons of the Schrödinger–Hirota equation, Opt. Laser Technol., 44, 2265, 10.1016/j.optlastec.2012.02.028
Inc, 2013, Some special structures for the generalized nonlinear Schrödinger equation with nonlinear dispersion, Waves Random Complex Media, 23, 77, 10.1080/17455030.2013.774509
Wazwaz, 2006, Exact solutions for the fourth order nonlinear Schrödinger equations with cubic and power law nonlinearities, Math. Comput. Model., 43, 802, 10.1016/j.mcm.2005.08.010
Anjan Biswas, 2003, Optical solitons: quasi-stationarity versus Lie transform, Opt. Quantum Electron., 35, 979, 10.1023/A:1025121931885
Biswas, 2004, Stochastic perturbation of optical solitons in Schrodinger–Hirota equation, Opt. Commun., 239, 457
Jawad, 2014, Soliton solutions of a few nonlinear wave equations in engineering sciences, Sci. Iran., 21, 861