Dispersive optical solitons by Kudryashov's method

Optik - Tập 125 Số 23 - Trang 6874-6880 - 2014
Mohammad Mirzazadeh1, Mostafa Eslami2, Anjan Biswas3,4
1Department of Mathematics, Faculty of Mathematical Sciences, University of Guilan, Rasht, Iran
2Department of Mathematics, Faculty of Mathematical Sciences, University of Mazandaran, Babolsar, Iran
3Department of Mathematical Sciences, Delaware State University, Dover, DE 19901-2277, USA
4Faculty of Science, Department of Mathematics, King Abdulaziz University, Jeddah 21589, Saudi Arabia

Tóm tắt

Từ khóa


Tài liệu tham khảo

Biswas, 2010, 1-Soliton solution of the K(m, n) equation with generalized evolution and time-dependent damping and dispersion, Comput. Math. Appl., 59, 2538, 10.1016/j.camwa.2010.01.013

Biswas, 2008, 1-Soliton solution of the K(m, n) equation with generalized evolution, Phys. Lett. A, 372, 4601, 10.1016/j.physleta.2008.05.002

Ma, 1993, Travelling wave solutions to a seventh order generalized KdV equation, Phys. Lett. A, 180, 221, 10.1016/0375-9601(93)90699-Z

Malfliet, 1992, Solitary wave solutions of nonlinear wave equations, Am. J. Phys., 60, 650, 10.1119/1.17120

Ma, 2010, A multiple exp-function method for nonlinear differential equations and its application, Phys. Scr., 82, 065003, 10.1088/0031-8949/82/06/065003

Kudryashov, 2005, Exact solitary waves of the Fisher equation, Phys. Lett. A, 342, 99, 10.1016/j.physleta.2005.05.025

Kudryashov, 2005, Simplest equation method to look for exact solutions of nonlinear differential equations, Chaos Soliton Fract., 24, 1217, 10.1016/j.chaos.2004.09.109

Hirota, 1971, Exact solution of the Korteweg-de Vries equation for multiple collision of solitons, Phys. Rev. Lett., 27, 1192, 10.1103/PhysRevLett.27.1192

Hirota, 2004

Ma, 2009, A transformed rational function method and exact solutions to the (3+1)-dimensional Jimbo–Miwa equation, Chaos Solitons Fract., 42, 1356, 10.1016/j.chaos.2009.03.043

Kudryashov, 1988, Exact soliton solutions of the generalized evolution equation of wave dynamics, J. Appl. Math. Mech., 52, 361, 10.1016/0021-8928(88)90090-1

Kudryashov, 2012, On one of methods for finding exact solutions of nonlinear differential equations, Commun. Nonlinear Sci. Numer. Simul., 17, 2248, 10.1016/j.cnsns.2011.10.016

Kudryashov, 1990, Exact solutions of the generalized Kuramoto–Sivashinsky equation, Phys. Lett. A., 147, 287, 10.1016/0375-9601(90)90449-X

Kudryashov, 1991, On types of nonlinear nonintegrable equations with exact solutions, Phys. Lett. A., 155, 269, 10.1016/0375-9601(91)90481-M

Kabir, 2011, Modified Kudryashov method for finding exact solitary wave solutions of higher-order nonlinear equations, Math. Meth. Appl. Sci., 34, 213, 10.1002/mma.1349

Ryabov, 2011, Application of the Kudryashov method for finding exact solutions of the high order nonlinear evolution equations, Appl. Math. Comput., 218, 3965

Ryabov, 2010, Exact solutions of the Kudryashov–Sinelshchikov equation, Appl. Math. Comput., 217, 3585

Taghizadeh, 2013, Application of Kudryashov method for high-order nonlinear Schrödinger equation, Indian J. Phys., 87, 781, 10.1007/s12648-013-0296-2

Bang, 1995, White noise in the two-dimensional nonlinear Schrödinger equation, Appl. Anal., 57, 3, 10.1080/00036819508840335

Biswas, 2009, Topological 1-soliton solution of the nonlinear Schrodinger's equation with Kerr law nonlinearity in 1 + 2 dimensions, Commun. Nonlinear Sci. Numer. Simul., 14, 2845, 10.1016/j.cnsns.2008.09.025

Borhanifar, 2010, Numerical study of nonlinear Schrödinger and coupled Schrödinger equations by differential transformation method, Opt. Commun., 283, 2026, 10.1016/j.optcom.2010.01.046

Triki, 2012, 1-soliton solution of the generalized dispersive nonlinear Schrödinger's equation with time-dependent coefficients, Adv. Sci. Lett., 16, 309, 10.1166/asl.2012.3255

Biswas, 2012, Soliton solutions of the perturbed resonant nonlinrear Schrödinger's equation with full nonlinearity by semi-inverse variational principle, Quantum Phys. Lett., 1, 79

Kohl, 2008, Optical soliton perturbation in a non-Kerr law media, Opt. Laser Technol., 40, 647, 10.1016/j.optlastec.2007.10.002

Biswas, 2012, Optical solitons and complexitons of the Schrödinger–Hirota equation, Opt. Laser Technol., 44, 2265, 10.1016/j.optlastec.2012.02.028

Inc, 2013, Some special structures for the generalized nonlinear Schrödinger equation with nonlinear dispersion, Waves Random Complex Media, 23, 77, 10.1080/17455030.2013.774509

Wazwaz, 2006, Exact solutions for the fourth order nonlinear Schrödinger equations with cubic and power law nonlinearities, Math. Comput. Model., 43, 802, 10.1016/j.mcm.2005.08.010

Anjan Biswas, 2003, Optical solitons: quasi-stationarity versus Lie transform, Opt. Quantum Electron., 35, 979, 10.1023/A:1025121931885

Biswas, 2004, Stochastic perturbation of optical solitons in Schrodinger–Hirota equation, Opt. Commun., 239, 457

Jawad, 2014, Soliton solutions of a few nonlinear wave equations in engineering sciences, Sci. Iran., 21, 861

Ma, 1996, Explicit and exact solutions to a Kolmogorov–Petrovskii–Piskunov equation, Int. J. Nonlinear Mech., 31, 329, 10.1016/0020-7462(95)00064-X