Dispersion State and Damage of Carbon Nanotubes and Carbon Nanofibers by Ultrasonic Dispersion: A Review

Nanomaterials - Tập 11 Số 6 - Trang 1469
Harald Rennhofer1, Benjamin Zanghellini1
1Department of Materials Science and Process Engineering, Institute of Physics and Materials Science, University of Natural Resources and Life Sciences, Vienna, Peter-Jordan-Strasse 82, A-1190 Vienna, Austria

Tóm tắt

Dispersion of carbon nanotubes and carbon nanofibers is a crucial processing step in the production of polymer-based nanocomposites and poses a great challenge due to the tendency of these nanofillers to agglomerate. Besides the well-established three-roll mill, the ultrasonic dispersion process is one of the most often used methods. It is fast, easy to implement, and obtains considerably good results. Nevertheless, damage to the nanofibers due to cavitation may lead to shortening and changes in the surface of the nanofillers. The proper application of the sonicator to limit damage and at the same time enable high dispersion quality needs dedicated knowledge of the damage mechanisms and characterization methods for monitoring nano-particles during and after sonication. This study gives an overview of these methods and indicates parameters to be considered in this respect. Sonication energy rather than sonication time is a key factor to control shortening. It seems likely that lower powers that are induced by a broader tip or plate sonicators at a longer running time would allow for proper dispersions, while minimizing damage.

Từ khóa


Tài liệu tham khảo

Aamir, 2019, Recent advances in drilling of carbon fiber–reinforced polymers for aerospace applications: A review, Int. J. Adv. Manuf. Technol., 105, 2289, 10.1007/s00170-019-04348-z

Sun, 2021, An integrated computational materials engineering framework to analyze the failure behaviors of carbon fiber reinforced polymer composites for lightweight vehicle applications, Compos. Sci. Technol., 202, 108560, 10.1016/j.compscitech.2020.108560

Hilmer, 2018, Eco-efficiency assessment of manufacturing carbon fiber reinforced polymers (CFRP) in aerospace industry, Aerosp. Sci. Technol., 79, 669, 10.1016/j.ast.2018.06.020

Sharma, 2014, Three-Phase Carbon Fiber Amine Functionalized Carbon Nanotubes Epoxy Composite: Processing, Characterisation, and Multiscale Modeling, J. Nanomater., 2014, 837492, 10.1155/2014/837492

Nguyen-Tran, H.-D., Hoang, V.-T., Do, V.-T., Chun, D.-M., and Yum, Y.-J. (2018). Effect of Multiwalled Carbon Nanotubes on the Mechanical Properties of Carbon Fiber-Reinforced Polyamide-6/Polypropylene Composites for Lightweight Automotive Parts. Materials, 11.

Dydek, 2019, Carbon Fiber Reinforced Polymers modified with thermoplastic nonwovens containing multi-walled carbon nanotubes, Compos. Sci. Technol., 173, 110, 10.1016/j.compscitech.2019.02.007

Du, 2019, A review on machining of carbon fiber reinforced ceramic matrix composites, Ceram. Int., 45, 18155, 10.1016/j.ceramint.2019.06.112

Yadav, 2020, Recent advances in carbon nanofibers and their applications–a review, Eur. Polym. J., 138, 109963, 10.1016/j.eurpolymj.2020.109963

Assi, 2021, Multiwall Carbon Nanotubes (MWCNTs) Dispersion & Mechanical Effects in OPC Mortar & Paste: A review, J. Build. Eng., 43, 102512, 10.1016/j.jobe.2021.102512

Kundalwal, 2020, Improved mechanical and viscoelastic properties of CNT-composites fabricated using an innovative ultrasonic dual mixing technique, J. Mech. Behav. Mater., 29, 77, 10.1515/jmbm-2020-0008

Guadagno, 2011, Effect of functionalization on the thermo-mechanical and electrical behavior of multi-wall carbon nanotube/epoxy composites, Carbon, 49, 1919, 10.1016/j.carbon.2011.01.017

Gu, 2015, Mode-I pullout model of nanofibers with surface effects, Eng. Fract. Mech., 150, 115, 10.1016/j.engfracmech.2015.02.018

Shakil, 2020, Mechanical properties of electrospun nanofiber reinforced/interleaved epoxy matrix composites—A review, Polym. Composite., 41, 2288, 10.1002/pc.25539

Ashour, 2012, On the aspect ratio effect of multi-walled carbon nanotube reinforcements on the mechanical properties of cementitious nanocomposites, Constr. Build. Mater., 35, 647, 10.1016/j.conbuildmat.2012.04.086

Tian, 2016, Comparatively studying the ultrasound present in a mild two-stage approach on the content of functional groups in modified MWCNT, Chem. Phys. Lett., 650, 11, 10.1016/j.cplett.2016.02.050

Zhou, 2014, Effective control of nanodefects in multiwalled carbon nanotubes by acid treatment, Carbon, 78, 121, 10.1016/j.carbon.2014.06.055

Singer, G., Siedlaczek, P., Sinn, G., Rennhofer, H., Mičušík, M., Omastová, M., Unterlass, M.M., Wendrinsky, J., Milotti, V., and Fedi, F. (2018). Acid Free Oxidation and Simple Dispersion Method of MWCNT for High-Performance CFRP. Nanomaterials, 8.

Wang, 2008, Load-transfer in functionalized carbon nanotubes/polymer composites, Chem. Phys. Lett., 457, 371, 10.1016/j.cplett.2008.04.037

Ma, 2012, Behavior of load transfer in functionalized carbon nanotube/epoxy nanocomposites, Polymer, 53, 6081, 10.1016/j.polymer.2012.10.053

Ma, 2010, Dispersion and functionalization of carbon nanotubes for polymer-based nanocomposites: A review, Compos. Part. A Appl. Sci., 41, 1345, 10.1016/j.compositesa.2010.07.003

Yoon, 2014, Controlling exfoliation in order to minimize damage during dispersion of long SWCNTs for advanced composites, Sci. Rep., 4, 1, 10.1038/srep03907

Thostenson, 2006, Processing-structure-multi-functional property relationship in carbon nanotube/epoxy composites, Carbon, 44, 3022, 10.1016/j.carbon.2006.05.014

Singer, G., Siedlaczek, P., Sinn, G., Kirner, P.H., Schuller, R., Wan-Wendner, R., and Lichtenegger, H.C. (2019). Vacuum Casting and Mechanical Characterization of Nanocomposites from Epoxy and Oxidized Multi-Walled Carbon Nanotubes. Molecules, 24.

Zanghellini, B., Knaack, P., Schörpf, S., Semlitsch, K.-H., Lichtenegger, H.C., Praher, B., Omastova, M., and Rennhofer, H. (2021). Solvent-Free Ultrasonic Dispersion of Nanofillers in Epoxy Matrix. Polymers, 13.

Blanch, 2011, Parametric analysis of sonication and centrifugation variables for dispersion of single walled carbon nanotubes in aqueous solutions of sodium dodecylbenzene sulfonate, Carbon, 49, 5213, 10.1016/j.carbon.2011.07.039

Ponti, 2019, Vial sonication and ultrasonic immersion probe sonication to generate stable dispersions of multiwall carbon nanotubes for physico-chemical characterization and biological testing, Nanotoxicology, 13, 923, 10.1080/17435390.2019.1597203

Ma, 2010, Dispersion, interfacial interaction and re-agglomeration of functionalized carbon nanotubes in epoxy composites, Carbon, 48, 1824, 10.1016/j.carbon.2010.01.028

Dehghan, 2016, Investigation of CNT Modification of Epoxy Resin in CFRP Strengthening Systems, Polym. Composite., 37, 1021, 10.1002/pc.23262

Larosa, 2017, Preparation and characterization of polycarbonate/multiwalled carbon nanotube nanocomposites, Beilstein J. Nanotechnol., 8, 2026, 10.3762/bjnano.8.203

Rezazadeh, 2017, Effect of amine-functionalized dispersant on cure and electrical properties of carbon nanotube/epoxy nanocomposites, Prog. Org. Coat., 111, 389, 10.1016/j.porgcoat.2017.06.017

Kim, 2009, Processing, characterization, and modeling of carbon nanotube-reinforced multiscale composites, Composite. Sci. Technol., 69, 335, 10.1016/j.compscitech.2008.10.019

Cosmoiu, 2016, Influence of Filler Dispersion on the Mechanical Properties of Nanocomposites, Mater. Today Proc., 3, 953, 10.1016/j.matpr.2016.03.027

Tiwari, 2020, Quantification of carbon nanotube dispersion and its correlation with mechanical and thermal properties of epoxy nanocomposites, J. Appl. Polym. Sci., 137, 48879, 10.1002/app.48879

Sabet, 2015, Effects of sonication energy on the dispersion of carbon nanotubes in a vinyl ester matrix and associated thermo-mechanical properties, J. Mater. Sci., 50, 4729, 10.1007/s10853-015-9024-y

Chen, 2014, Predicting the influence of ultrasonication energy on the reinforcing efficiency of carbon nanotubes, Carbon, 77, 1, 10.1016/j.carbon.2014.04.023

Hennrich, 2007, The mechanism of cavitation-induced scission of single-walled carbon nanotubes, J. Phys. Chem. B, 111, 1932, 10.1021/jp065262n

Lucas, 2009, Kinetics of Nanotube and Microfiber Scission under Sonication, J. Phys. Chem. C, 113, 20599, 10.1021/jp906296y

Sesis, 2013, Influence of Acoustic Cavitation on the Controlled Ultrasonic Dispersion of Carbon Nanotubes, J. Phys. Chem. B, 117, 15141, 10.1021/jp410041y

Montazeri, 2014, Effect of sonication parameters on the mechanical properties of multi-walled carbon nanotube/epoxy composites, Mater. Des., 56, 500, 10.1016/j.matdes.2013.11.013

Gleize, 2020, Effect of carbon nanotubes sonication on mechanical properties of cement pastes, Rev. Ibracon. Estrut. Mater., 13, 455, 10.1590/s1983-41952020000200013

Zou, 2015, Effect of ultrasonication energy on engineering properties of carbon nanotube reinforced cement pastes, Carbon, 85, 212, 10.1016/j.carbon.2014.12.094

Olowojoba, 2013, Influence of process parameters on the morphology, rheological and dielectric properties of three-roll-milled multiwalled carbon nanotube/epoxy suspensions, Polymer, 54, 188, 10.1016/j.polymer.2012.11.054

Jayaraman, 2020, Effect of High Energy Ball Milling on Reinforcement of MWCNTs in Magnesium Nano Composites, Int. J. Adv. Sci. Technol., 29, 4174

Krause, 2011, Influence of dry grinding in a ball mill on the length of multiwalled carbon nanotubes and their dispersion and percolation behaviour in melt mixed polycarbonate composites, Compos. Sci. Technol., 71, 1145, 10.1016/j.compscitech.2011.04.004

Choi, 2012, The effect of milling conditions on microstructures and mechanical properties of Al/MWCNT composites, Compos. Part A Appl. Sci., 43, 1061, 10.1016/j.compositesa.2012.02.008

Awotunde, 2021, Influence of ball milling parameters on the dispersion characteristics and structural integrity of MWCNTs in nickel aluminide matrix powders, Particul. Sci. Technol., 39, 298, 10.1080/02726351.2019.1708519

Gorrasi, 2007, Incorporation of carbon nanotubes into polyethylene by high energy ball milling: Morphology and physical properties, J. Polym. Sci. Pol. Phys., 45, 597, 10.1002/polb.21070

Naumov, 2013, Length-dependent optical properties of single-walled carbon nanotube samples, Chem. Phys., 422, 255, 10.1016/j.chemphys.2012.12.033

Huang, 2019, An improved technique for dispersion of natural graphite particles in thermoplastic polyurethane by sub-critical gas-assisted processing, Compo Sci. Technol., 182, 107783, 10.1016/j.compscitech.2019.107783

Yokozeki, 2009, Fracture toughness improvement of CFRP laminates by dispersion of cup-stacked carbon nanotubes, Compos. Sci. Technol., 69, 2268, 10.1016/j.compscitech.2008.12.017

Huang, 2012, Dispersion of Carbon Nanotubes: Mixing, Sonication, Stabilization, and Composite Properties, Polymers, 4, 275, 10.3390/polym4010275

Dehane, 2021, A comprehensive numerical analysis of heat and mass transfer phenomenons during cavitation sono-process, Ultrason. Sonochem., 73, 105498, 10.1016/j.ultsonch.2021.105498

Bhangu, S.K., and Ashokkumar, M. (2017). Theory of Sonochemistry, Springer International Publishing.

Ashokkumar, 2011, The characterization of acoustic cavitation bubbles—An overview, Ultrason. Sonochem., 18, 864, 10.1016/j.ultsonch.2010.11.016

Betts, 2013, Potential for metal contamination by direct sonication of nanoparticle suspensions, Environ. Toxicol. Chem., 32, 889, 10.1002/etc.2123

Dassios, 2015, Optimization of Sonication Parameters for Homogeneous Surfactant-Assisted Dispersion of Multiwalled Carbon Nanotubes in Aqueous Solutions, J. Phys. Chem. C, 119, 7506, 10.1021/acs.jpcc.5b01349

Kim, 2021, A novel physicomechanical approach to dispersion of carbon nanotubes in polypropylene composites, Compos. Struct., 258, 113377, 10.1016/j.compstruct.2020.113377

Liu, 2005, Rubbery and glassy epoxy resins reinforced with carbon nanotubes, Compos. Sci. Technol., 65, 1861, 10.1016/j.compscitech.2005.04.002

Chang, 2008, Ultrasonication-assisted surface functionalization of double-walled carbon nanotubes with azobis-type radical initiators, J. Mater. Chem., 18, 3972, 10.1039/b806384b

Han, 2019, Mechanical and electrical properties of graphene and carbon nanotube reinforced epoxy adhesives: Experimental and numerical analysis, Compos. Part A Appl. Sci. Manuf., 120, 116, 10.1016/j.compositesa.2019.02.027

Ganapathi, 2020, Impact of ultrasonication on carbon nanotube demixing and damage in polymer nanocomposites, J. Appl. Polym. Sci., 137, 49370, 10.1002/app.49370

Pagani, 2012, Competing mechanisms and scaling laws for carbon nanotube scission by ultrasonication, Pooc. Natl. Acad. Sci. USA, 109, 11599, 10.1073/pnas.1200013109

Taurozzi, 2012, Preparation of nanoparticle dispersions from powdered material using ultrasonic disruption, NIST Spec. Publ., 1200, 1200

Chapkin, 2018, Length dependence of electrostatically induced carbon nanotube alignment, Carbon, 131, 275, 10.1016/j.carbon.2018.01.014

Huang, 2009, Strength of Nanotubes, Filaments, and Nanowires From Sonication-Induced Scission, Adv. Mater., 21, 3945, 10.1002/adma.200900498

Jang, 2017, Exponential decrease of scission length and low tensile strength of bamboo-shaped multi-walled carbon nanotubes under ultrasonication, Curr. Appl. Phys., 17, 507, 10.1016/j.cap.2017.01.012

Fuge, 2016, Fragmentation characteristics of undoped and nitrogen-doped multiwalled carbon nanotubes in aqueous dispersion in dependence on the ultrasonication parameters, Diam. Relat. Mater., 66, 126, 10.1016/j.diamond.2016.03.026

Islam, 2003, High weight fraction surfactant solubilization of single-wall carbon nanotubes in water, Nano Lett., 3, 269, 10.1021/nl025924u

Yu, 2012, Optimizing sonication parameters for dispersion of single-walled carbon nanotubes, Chem. Phys., 408, 11, 10.1016/j.chemphys.2012.08.020

Arrigo, R., Teresi, R., Gambarotti, C., Parisi, F., Lazzara, G., and Dintcheva, N.T. (2018). Sonication-Induced Modification of Carbon Nanotubes: Effect on the Rheological and Thermo-Oxidative Behaviour of Polymer-Based Nanocomposites. Materials, 11.

Lu, 1996, Mechanical damage of carbon nanotubes by ultrasound, Carbon, 34, 814, 10.1016/0008-6223(96)89470-X

Le, 2017, Ultrasound-promoted direct functionalization of multi-walled carbon nanotubes in water via Diels-Alder “click chemistry”, Ultrason. Sonochem., 39, 321, 10.1016/j.ultsonch.2017.04.042

Gutierrez, 2013, An efficient method for the carboxylation of few-wall carbon nanotubes with little damage to their sidewalls, Mater. Chem. Phys., 140, 499, 10.1016/j.matchemphys.2013.03.060

Siedlaczek, P. (2018). Charakterisierung Oxidierter und Funktionalisierter Carbon-Nanotubes für den Einsatz in Kohlenstofffaser-Kompositen. [Master’s Thesis, Universität für Bodenkultur Wien].

Rausch, 2010, Surfactant assisted dispersion of functionalized multi-walled carbon nanotubes in aqueous media, Compos. Part A Appl. Sci. Manuf., 41, 1038, 10.1016/j.compositesa.2010.03.007

Vichchulada, 2010, Sonication Power for Length Control of Single-Walled Carbon Nanotubes in Aqueous Suspensions Used for 2-Dimensional Network Formation, J. Phys. Chem., 114, 12490

Njuguna, 2015, A Review of Spectral Methods for Dispersion Characterization of Carbon Nanotubes in Aqueous Suspensions, J. Spectrosc., 2015, 463156, 10.1155/2015/463156

Badaire, 2004, In situ measurements of nanotube dimensions in suspensions by depolarized dynamic light scattering, Langmuir, 20, 10367, 10.1021/la049096r

Potschke, 2002, Rheological behavior of multiwalled carbon nanotube/polycarbonate composites, Polymer, 43, 3247, 10.1016/S0032-3861(02)00151-9

Kim, 2006, Effects of surface modification on rheological and mechanical properties of CNT/epoxy composites, Carbon, 44, 1898, 10.1016/j.carbon.2006.02.026

Song, 2006, Rheological characterization of carbon nanotubes/poly(ethylene oxide) composites, Rheol. Acta, 46, 231, 10.1007/s00397-006-0137-8

Wang, 2011, Rheology, Crystallization Behaviors, and Thermal Stabilities of Poly(butylene succinate)/Pristine Multiwalled Carbon Nanotube Composites Obtained by Melt Compounding, J. Appl. Polym. Sci., 121, 59, 10.1002/app.33222

Fan, 2007, Rheology of multiwall carbon nanotube suspensions, J. Rheol., 51, 585, 10.1122/1.2736424

Chang, 2006, Conductivity and mechanical properties of well-dispersed single-wall carbon nanotube/polystyrene composite, Polymer, 47, 7740, 10.1016/j.polymer.2006.09.013

Ali, 2015, In Situ Monitoring of Dispersion Dynamics of Carbon Nanotubes during Sonication Using Electrical Conductivity Measurements, J. Nanomater., 2015, 479053, 10.1155/2015/479053

Tan, 2005, Dispersion of single-walled carbon nanotubes of narrow diameter distribution, J. Phys. Chem. B, 109, 14454, 10.1021/jp052217r

Wu, 2014, Length reduction of multi-walled carbon nanotubes via high energy ultrasonication and its effect on their dispersibility, J. Nanopart. Res., 16, 2563, 10.1007/s11051-014-2563-3

Ruan, 2012, Ultrasonication effects on thermal and rheological properties of carbon nanotube suspensions, Nanoscale Res. Lett., 7, 1, 10.1186/1556-276X-7-127

Hilding, 2003, Dispersion of Carbon Nanotubes in Liquids, J. Disper. Sci. Technol., 24, 1, 10.1081/DIS-120017941

Chun, 2008, Size Separation of Single-Wall Carbon Nanotubes by Flow-Field Flow Fractionation, Anal. Chem., 80, 2514, 10.1021/ac7023624

Jung, 2012, Reduced damage to carbon nanotubes during ultrasound-assisted dispersion as a result of supercritical-fluid treatment, Carbon, 50, 633, 10.1016/j.carbon.2011.08.075

Cheng, 2010, Ultrasound-Assisted SWNTs Dispersion: Effects of Sonication Parameters and Solvent Properties, J. Phys. Chem. C, 114, 8821, 10.1021/jp101431h

Koh, 2015, The Impact of Sonication on the Surface Quality of Single-Walled Carbon Nanotubes, J. Pharm. Sci., 104, 2594, 10.1002/jps.24483

Mukhopadhyay, 2002, Conversion of carbon nanotubes to carbon nanofibers by sonication, Carbon, 40, 1373, 10.1016/S0008-6223(02)00074-X