Nội dung được dịch bởi AI, chỉ mang tính chất tham khảo
Phân tán và ổn định hạt nano cellulose trong các phân tán nhựa acrylic với độ trong suốt không giảm và thay đổi tính chất lưu biến
Tóm tắt
Bài báo này đánh giá tiềm năng sử dụng hạt nano cellulose (T-CNP) oxy hóa 2,2,6,6-tetramethylpiperidin-1-yl)oxyl (TEMPO) như phụ gia để điều chỉnh tính lưu biến của các lớp phủ nhựa acrylic (AR) trên cơ sở nước cho các ứng dụng bao bì linh hoạt. Ba loại T-CNP gồm T-CNF, T-MCC và T-CNC được chuẩn bị từ ba loại vật liệu cellulose khởi đầu: sợi nano cellulose (CNF), cellulose vi tinh thể (MCC) và tinh thể nano cellulose (CNC), tương ứng. Kích thước của chúng dao động từ 20 nm đến 20 μm đường kính, và từ 234 nm đến trên 500 nm chiều dài. Quá trình oxy hóa đã tạo ra các nhóm carboxyl trên bề mặt của các hạt nano với tỷ lệ từ 1,99 đến 2,79 mmol/g và làm tăng các tiềm năng zeta của các hạt nano, rõ ràng cải thiện khả năng phân tán và độ ổn định của các CNP trong AR. Phân tán AR/T-CNP cho thấy độ trong suốt không giảm. Hình thái của các T-CNP ảnh hưởng đến các tính chất lưu biến của phân tán AR/T-CNP. Tỷ lệ khía cạnh lớn hơn của T-CNF và T-MCC dẫn đến độ nhớt cao và hành vi viscoelastic giống như rắn của các phân tán AR/hạt nano tại nồng độ 0,78 wt%. CNC và T-CNC có kích thước hạt nhỏ hơn và tỷ lệ khía cạnh ít ảnh hưởng đến độ nhớt và hành vi lưu biến của các phân tán thu được so với các loại còn lại - ngay cả tại hàm lượng cao 1,30 wt%. Do tỷ lệ khía cạnh thấp hơn nhưng kích thước hạt tương đối lớn, các phân tán AR/T-MCC thể hiện các tính chất lưu biến giống như gel đàn hồi với hàm lượng thấp.
Từ khóa
#hạt nano cellulose #nhựa acrylic #lưu biến #oxy hóa TEMPO #bao bì linh hoạtTài liệu tham khảo
Abitbol T, Kloser E, Gray DG (2013) Estimation of the surface sulfur content of cellulose nanocrystals prepared by sulfuric acid hydrolysis. Cellulose 20:785–794. https://doi.org/10.1007/s10570-013-9871-0
Baldacchini T, Lafratta CN, Farrer RA, Teich MC, Saleh BEA, Naughton MJ et al (2004) Acrylic-based resin with favorable properties for three-dimensional two-photon polymerization. J Appl Phys 95:6072–6076. https://doi.org/10.1063/1.1728296
Benhamou K, Dufresne A, Magnin A, Mortha G, Kaddami H (2014) Control of size and viscoelastic properties of nanofibrillated cellulose from palm tree by varying the tempo-mediated oxidation time. Carbohydr Polym 99:74–83. https://doi.org/10.1016/j.carbpol.2013.08.032
Boluk Y, Zhao L, Incani V (2012) Dispersions of nanocrystalline cellulose in aqueous polymer solutions: structure formation of colloidal rods. Langmuir 28:6114–6123. https://doi.org/10.1021/la2035449
Bousfield D, Richmond F, Bilodeau M (2013) The properties of paper coating layers that contain cellulose nanofibrils. In: TAPPI international conference on nanotechnology for renewable materials, Stockholm, Sweden
Charani PR, Dehghani-Firouzabadi M, Afra E, Shakeri A (2013) Rheological characterization of high concentrated mfc gel from kenaf unbleached pulp. Cellulose 20:727–740. https://doi.org/10.1007/s10570-013-9862-1
Chen P, Yu H, Liu Y, Chen W, Wang X, Ouyang M (2013) Concentration effects on the isolation and dynamic rheological behavior of cellulose nanofibers via ultrasonic processing. Cellulose 20:149–157. https://doi.org/10.1007/s10570-012-9829-7
Cho SY (2010) Flow-induced liquid crystalline solutions prepared from aspect ratio-controlled bacterial cellulose nanowhiskers. Mol Cryst Liq Cryst 519:141–148. https://doi.org/10.1080/15421401003609897
Du L, Wang J, Zhang Y, Qi C, Wolcott MP, Yu Z (2017) A co-production of sugars, lignosulfonates, cellulose, and cellulose nanocrystals from ball-milled woods. Bioresour Technol 238:254–262. https://doi.org/10.1016/j.biortech.2017.03.097
Duan Y, Huo Y, Duan L (2017) Preparation of acrylic resins modified with epoxy resins and their behaviors as binders of waterborne printing ink on plastic film. Colloids and surfaces a: physicochemical and engineering aspects 535:225–231
Elrebii M, Mabrouk AB, Boufi S (2014) Synthesis and properties of hybrid alkyd-acrylic dispersions and their use in VOC-free waterborne coatings. Progress Org Coat 77:757–764. https://doi.org/10.1016/j.porgcoat.2013.12.016
Feng J, Hsieh YL (2013) Chemically and mechanically isolated nanocellulose and their self-assembled structures. Carbohydr Polym 95:32–40. https://doi.org/10.1016/j.carbpol.2013.02.022
French AD (2014) Idealized powder diffraction patterns for cellulose polymorphs. Cellulose 21:885–896. https://doi.org/10.1007/s10570-013-0030-4
Grüneberger F, Künniger T, Zimmermann T, Arnold M (2014) Rheology of nanofibrillated cellulose/acrylate systems for coating applications. Cellulose 21:1313–1326. https://doi.org/10.1007/s10570-014-0248-9
Hay MB, Myneni SCB (2007) Structural environments of carboxyl groups in natural organic molecules from terrestrial systems. Part 1: infrared spectroscopy. Geochim Cosmochim Acta 71:3518–3532. https://doi.org/10.1016/j.gca.2007.03.038
Hunter RJ (1981) Zeta potential in colloids science. Academic Press, New York. https://doi.org/10.1016/b978-0-12-361961-7.50007-9
Jin L, Wei Y, Xu Q, Yao W, Cheng Z (2014) Cellulose nanofibers prepared from tempo-oxidation of kraft pulp and its flocculation effect on kaolin clay. J Appl Polym Sci 131:469–474. https://doi.org/10.1002/app.40450
Kargarzadeh H, Ahmad I, Abdullah I, Dufresne A, Zainudin SY, Sheltami RM (2012) Effects of hydrolysis conditions on the morphology, crystallinity, and thermal stability of cellulose nanocrystals extracted from kenaf bast fibers. Cellulose 19:855–866. https://doi.org/10.1007/s10570-012-9684-6
Li MC, Wu Q, Song K, Lee S, Yan Q, Wu Y (2015) Cellulose nanoparticles: structure–morphology–rheology relationships. ACS Sustain Chem Eng 3:821–832. https://doi.org/10.1021/acssuschemeng.5b00144
Lin L, Shuai Z, Jin Z, Zhen XZ, Hu H, Xin Z et al (2013) Tempo-mediated oxidation of microcrystalline cellulose: influence of temperature and oxidation procedure on yields of water-soluble products and crystal structures of water-insoluble residues. Fibers Polym 14:352–357. https://doi.org/10.1007/s12221-013-0352-8
Moberg T, Sahlin K, Yao K, Geng S, Westman G, Zhou Q et al (2017) Rheological properties of nanocellulose suspensions: effects of fibril/particle dimensions and surface characteristics. Cellulose 24:1–12. https://doi.org/10.1007/s10570-017-1283-0
Okita Y, Saito T, Isogai A (2010) Entire surface oxidation of various cellulose microfibrils by tempo-mediated oxidation. Biomacromolecules 11:1696–1700. https://doi.org/10.1021/bm100214b
Osterberg M, Vartiainen J, Lucenius J, Hippi U, Seppala J, Serimaa R, Laine J (2013) A fast method to produce strong NFC films as a platform for barrier and functional materials. ACS Appl Mater Interfaces 5:4640–4647. https://doi.org/10.1021/am401046x
Reid MS, Villalobos M, Cranston ED (2017) Benchmarking cellulose nanocrystals: from the laboratory to industrial production. Langmuir 33:1583–1598. https://doi.org/10.1021/acs.langmuir.6b03765
Ruiz M, Cavaille J, Dufresne A, Graillat C, Geŕard J (2001) New waterborne epoxy coatings based on cellulose nanofillers. Macromol Symp 169:211–222. https://doi.org/10.1002/1521-3900(200105)169:1<211::AID-MASY211>3.0.CO;2-H
Sadeghifar H, Filpponen I, Clarke SP, Brougham DF, Argyropoulos DS (2011) Production of cellulose nanocrystals using hydrobromic acid and click reactions on their surface. J Mater Sci 46:7344–7355. https://doi.org/10.1007/s10853-011-5696-0
Saito T, Isogai A (2004) Tempo-mediated oxidation of native cellulose: the effect of oxidation conditions on chemical and crystal structures of the water-insoluble fractions. Biomacromolecules 5:1983–1989. https://doi.org/10.1021/bm0497769
Sanchez-Garcia MD, Lagaron JM (2010) On the use of plant cellulose nanowhiskers to enhance the barrier properties of polylactic acid. Cellulose 17:987–1004. https://doi.org/10.1007/s10570-010-9430-x
Shibata I, Isogai A (2003) Depolymerization of cellouronic acid during tempo-mediated oxidation. Cellulose 10:151–158. https://doi.org/10.1023/a:1024051514026
Shinoda R, Saito T, Okita Y, Isogai A (2012) Relationship between length and degree of polymerization of tempo-oxidized cellulose nanofibrils. Biomacromolecules 13:842–849. https://doi.org/10.1021/bm2017542
Tan Y, Liu Y, Chen W, Liu Y, Wang Q, Li J et al (2016) Homogeneous dispersion of cellulose nanofibers in waterborne acrylic coatings with improved properties and unreduced transparency. ACS Sustain Chem Eng 4:3766–3772. https://doi.org/10.1021/acssuschemeng.6b00415
Veigel S, Grüll G, Pinkl S, Obersriebnig M, Müller U, Gindl-Altmutter W (2014) Improving the mechanical resistance of waterborne wood coatings by adding cellulose nanofibres. React Funct Polym 85:214–220. https://doi.org/10.1016/j.reactfunctpolym.2014.07.020
Wang L (2013) Dynamic and steady rheological properties of printing pastes and the influence on printing performances. Doctoral dissertation, Donghua University, China
Yu HY, Qin ZY, Liu L, Yang XG, Zhou Y, Yao JM (2013) Comparison of the reinforcing effects for cellulose nanocrystals obtained by sulfuric and hydrochloric acid hydrolysis on the mechanical and thermal properties of bacterial polyester. Compos Sci Technol 87:22–28. https://doi.org/10.1016/j.compscitech.2013.07.024