Dispersal traits interact with dynamic connectivity to affect metapopulation growth and stability

Theoretical Ecology - Tập 12 - Trang 111-127 - 2018
Ridouan Bani1, Marie-Josée Fortin2, Rémi M. Daigle3, Frédéric Guichard1
1Department of Biology, McGill University, Montréal, Canada
2Department of Ecology & Evolutionary Biology, University of Toronto, Toronto, Canada.
3Département de Biologie, Université Laval, Québec City, Canada

Tóm tắt

Many marine benthic species undergo a pelagic larval stage during which larvae are transported by ocean currents over a broad range of spatial and temporal scales. Although metapopulation theory predicts how stochastic dispersal can alter the stability of metapopulations, little is known about how dispersal-related traits such as spawning time and larval duration interact with spatiotemporal connectivity to affect metapopulation growth and stability. We used stochastic models and stage-structured metapopulation dynamics to study the interacting effects of ocean currents and dispersal traits on regional growth and stability. We derived stochastic metapopulation growth and stability, which predict the strong impact of local density regulation on the response of metapopulation to dynamic connectivity: temporal variance, positive (negative) covariance, and negative (positive) autocorrelation in connectivity deflate (inflate) density-independent growth. Yet, stability decreases (increases) with temporal variance and positive (negative) covariance of connectivity. We applied our derived metrics to simulated connectivity along the coast of British Colombia (Canada) over a range of spawning time (ST) and pelagic larval duration (PLD). Our analysis shows strong interactions between statistical components of connectivity, dispersal-related traits, and metapopulation growth and stability. The non-monotonic response of metapopulation stability to PLD was driven by mean of connectivity over short PLDs (< 36 days), with a decrease in mean connectivity and stability with PLD. Over longer PLDs, temporal variance in connectivity had a dominant effect, with both a decrease in temporal variance of connectivity and an increase stability with PLDs > 36 days. We therefore use a trait-based framework and partitioning the relative importance of spatial and temporal components of stochastic marine dispersal, to inform species response through climate-induced changes in larval transport and in dispersal-related traits.

Tài liệu tham khảo

Andersson H, Britton T (2000) Stochastic epidemics in dynamic populations: quasi-stationarity and extinction. J Math Biol 41(6):559–580 Andrello M, Jacobi MN, Manel S, Thuiller W, Mouillot D (2015) Extending networks of protected areas to optimize connectivity and population growth rate. Ecography 38(3):273–282 Andrello M, Mouillot D, Somot S, Thuiller W, Manel S (2015) Additive effects of climate change on connectivity between marine protected areas and larval supply to fished areas. Divers Distrib 21(2):139–150 Berglund M, Nilsson Jacobi M, Jonsson PR (2012) Optimal selection of marine protected areas based on connectivity and habitat quality. Ecol Model 240:105–112 Berkley HA, Kendall BE, Mitarai S, Siegel DA (2010) Turbulent dispersal promotes species coexistence. Ecol Lett 13(3):360–371 Blasius B, Huppert A, Stone L (1999) Complex dynamics and phase synchronization in spatially extended ecological systems. Nature 399(6734):354–359 Bohonak AJ (1999) Dispersal, gene flow, and population structure. Quarterly Rev Biol 74(1):21–45 Botsford L, Moloney C, Hastings A, Largier J, Powell T, Higgins K, Quinn J (1994) The influence of spatially and temporally varying oceanographic conditions on meroplanktonic metapopulations. Deep Sea Research Part II: Topical Studies in Oceanography 41(1):107–145 Branch G (1984) Competition between marine organisms: ecological and evolutionary implications. Oceanogr Mar Biol Annu Rev 22:429–593 Burt J, Akins P, Latham E, Beck M, Salomon A, Ban N (2014) Marine protected area network design features that support resilient human-ocean systems–applications for British Columbia, Canada, Technical report Cai W, Santoso A, Wang G, Yeh S-W, An S-I, Cobb KM, Collins M, Guilyardi E, Jin F-F, Kug J-S et al (2015) Enso and greenhouse warming. Nat Clim Chang 5(9):849 Caley M, Carr M, Hixon M, Hughes T, Jones G, Menge B (1996) Recruitment and the local dynamics of open marine populations. Annu Rev Ecol Syst 27(1):477–500 Castorani MC, Reed DC, Raimondi PT, Alberto F, Bell TW, Cavanaugh KC, Siegel DA, Simons RD (2017) Fluctuations in population fecundity drive variation in demographic connectivity and metapopulation dynamics. In: Proceedings of the Royal Society B, vol 284. The Royal Society, pp 2016–2086 Cowen RK, Sponaugle S (2009) Larval dispersal and marine population connectivity. Annual Review of Marine Science 1:443–466 Cushing D (1990) Plankton production and year-class strength in fish populations: an update of the match/mismatch hypothesis. In: Advances in marine biology, vol 26, Elsevier, pp 249–293 Doak DF, Morris WF, Pfister C, Kendall BE, Bruna EM (2005) Correctly estimating how environmental stochasticity influences fitness and population growth. The American Naturalist 166(1):E14–E21 Eckert GL (2003) Effects of the planktonic period on marine population fluctuations. Ecol 84(2):372–383 Eger AM, Curtis JM, Fortin M-J, Côté IM, Guichard F (2016) Transferability and scalability of species distribution models: a test with sedentary marine invertebrates. Can J Fish Aquat Sci 74(5):766–778 Ethier SN, Kurtz TG (2009) Markov processes: characterization and convergence, vol 282. Wiley, New York Foreman MGG, Crawford WR, Cherniawsky JY, Galbraith J (2008) Dynamic ocean topography for the northeast pacific and its continental margins. Geophys Res Lett 35:L22606 Gerber LR, Mancha-Cisneros MDM, O’connor MI, Selig ER (2014) Climate change impacts on connectivity in the ocean: Implications for conservation. Ecosphere 5(3):1–18 Gonzalez A, Holt RD (2002) The inflationary effects of environmental fluctuations in source–sink systems. Proc Natl Acad Sci 99(23):14872–14877 Guichard F, Levin SA, Hastings A, Siegel D (2004) Toward a dynamic metacommunity approach to marine reserve theory. Bioscience 54(11):1003–1011 Hanski I (1999) Habitat connectivity, habitat continuity, and metapopulations in dynamic landscapes. Oikos 87(2):209–219 Harley CD, Randall Hughes A, Hultgren KM, Miner BG, Sorte CJ, Thornber CS, Rodriguez LF, Tomanek L, Williams SL (2006) The impacts of climate change in coastal marine systems. Ecol Lett 9 (2):228–241 Hastings A, Botsford LW (2006) Persistence of spatial populations depends on returning home. Proc Natl Acad Sci 103(15):6067–6072 Holt RD (1990) The microevolutionary consequences of climate change. Trends Ecol Evol 5(9):311–315 Hu D, Wu L, Cai W, Gupta AS, Ganachaud A, Qiu B, Gordon AL, Lin X, Chen Z, Hu S et al (2015) Pacific western boundary currents and their roles in climate. Nature 522(7556):299–308 Hunt HL, Scheibling RE (1997) Role of early post-settlement mortality in recruitment of benthic marine invertebrates. Mar Ecol Prog Ser 155:269–301 Jacobi MN, André C, Döös K, Jonsson PR (2012) Identification of subpopulations from connectivity matrices. Ecography 35(11):1004–1016 Jones GP (1987) Competitive interactions among adults and juveniles in a coral reef fish. Ecol 68(5):1534–1547 Kendall BE, Bjørnstad ON, Bascompte J, Keitt TH, Fagan WF (2000) Dispersal, environmental correlation, and spatial synchrony in population dynamics. The American Naturalist 155(5):628–636 Kerr KA, Christy JH, Joly-Lopez Z, Luque J, Collin R, Guichard F (2014) Reproducing on time when temperature varies: shifts in the timing of courtship by fiddler crabs. PloS One 9(5):e97593 Knapp S, Schweiger O, Kraberg A, Asmus H, Asmus R, Brey T, Frickenhaus S, Gutt J, Kühn I, Liess M et al (2017) Do drivers of biodiversity change differ in importance across marine and terrestrial systems or is it just different research communities’ perspectives? Sci Total Environ 574:191–203 Kool JT, Moilanen A, Treml EA (2013) Population connectivity: recent advances and new perspectives. Landsc Ecol 28(2):165–185 Kurtz TG (1978) Strong approximation theorems for density dependent Markov chains. Stoch Process Appl 6(3):223–240 Kurtz TG (1981) Approximation of population processes, vol 36. SIAM Lande R, Engen S, Sæther B-E (1999) Spatial scale of population synchrony: environmental correlation versus dispersal and density regulation. The American Naturalist 154(3):271–281 Le Corre N, Johnson LE, Smith GK, Guichard F (2015) Patterns and scales of connectivity: temporal stability and variation within a marine metapopulation. Ecology 96(8):2245–2256 Lett C, Ayata S-D, Huret M, Irisson J-O (2010) Biophysical modelling to investigate the effects of climate change on marine population dispersal and connectivity. Prog Oceanogr 87(1):106–113 Lowe WH, Allendorf FW (2010) What can genetics tell us about population connectivity? Mol Ecol 19 (15):3038–3051 Lowe WH, McPeek MA (2014) Is dispersal neutral? Trends in Ecology & Evolution 29(8):444–450 Masson D, Fine I (2012) Modeling seasonal to interannual ocean variability of Coastal British Columbia. J Geophys Res Oceans 117:C10 Merriam G (1984) Connectivity: a fundamental ecological characteristic of landscape pattern. In: Brandt J, Agger P (eds) Methodology in landscape ecological research and planning: proceedings, 1st seminar, International Association of Landscape Ecology, Roskilde, Denmark, Oct 15-19, 1984 Mitarai S, Siegel DA, Watson JR, Dong C, McWilliams JC (2009) Quantifying connectivity in the coastal ocean with application to the Southern California bight. J Geophys Res Oceans 114:C10026 Moran P (1953) The statistical analysis of the canadian lynx cycle. Aust J Zool 1(3):291–298 Munday PL, Jones GP, Pratchett MS, Williams AJ (2008) Climate change and the future for coral reef fishes. Fish Fish 9(3):261–285 Munday P, Leis J, Lough J, Paris C, Kingsford M, Berumen M, Lambrechts J (2009) Climate change and coral reef connectivity. Coral Reefs 28(2):379–395 Nathan R, Getz WM, Revilla E, Holyoak M, Kadmon R, Saltz D, Smouse PE (2008) A Movement ecology paradigm for unifying organismal movement research. Proc Natl Acad Sci 105(49):19052–19059 Newman M (2013) An empirical benchmark for decadal forecasts of global surface temperature anomalies. J Clim 26(14):5260– 5269 North EW, Adams EE, Schlag Z, Sherwood CR, He R, Hyun KH, Socolofsky SA (2011) Simulating oil droplet dispersal from the deepwater horizon spill with a lagrangian approach. Geophys Monogr Ser 195:217–226 O’Connor MI, Bruno JF, Gaines SD, Halpern BS, Lester SE, Kinlan BP, Weiss JM (2007) Temperature control of larval dispersal and the implications for marine ecology, evolution, and conservation. Proc Natl Acad Sci 104(4):1266–1271 Olivieri I, Gouyon P-H (1997) Evolution of migration rate and other traits: the metapopulation effect. In: Metapopulation biology. Elsevier, pp 293–323 Parmesan C, Yohe G (2003) A Globally coherent fingerprint of climate change impacts across natural systems. Nature 421(6918):37– 42 Pimm SL, Redfearn A (1988) The variability of population densities. Nature 334(6183):613 Pringle CM (2001) Hydrologic connectivity and the management of biological reserves: a global perspective. Ecol Appl 11(4):981–998 Ranta E, Kaitala V, Lundberg P (1997) The spatial dimension in population fluctuations. Science 278 (5343):1621–1623 Ripa J (2000) Analysing the moran effect and dispersal: their significance and interaction in synchronous population dynamics. Oikos 89(1):175–187 Roberts CM (1997) Connectivity and management of caribbean coral reefs. Science 278(5342):1454–1457 Roy M, Holt RD, Barfield M (2005) Temporal autocorrelation can enhance the persistence and abundance of metapopulations comprised of coupled sinks. The American Naturalist 166(2):246–261 Rubenstein DR, Hobson KA (2004) From birds to butterflies: animal movement patterns and stable isotopes. Trends in Ecology & Evolution 19(5):256–263 Saura S, Bodin Ö, Fortin M-J (2014) Editor’s choice: Stepping stones are crucial for species’ long-distance dispersal and range expansion through habitat networks. J Appl Ecol 51(1):171–182 Schreiber SJ (2010) Interactive effects of temporal correlations, spatial heterogeneity and dispersal on population persistence. Proc R Soc Lond B Biol Sci 277(1689):1907–1914 Selkoe KA, Watson JR, White C, Horin TB, Iacchei M, Mitarai S, Siegel DA, Gaines SD, Toonen RJ (2010) Taking the chaos out of genetic patchiness: seascape genetics reveals ecological and oceanographic drivers of genetic patterns in three temperate reef species. Mol Ecol 19(17):3708–3726 Siegel D, Mitarai S, Costello C, Gaines S, Kendall B, Warner R, Winters K (2008) The stochastic nature of larval connectivity among nearshore marine populations. Proc Natl Acad Sci 105(26):8974–8979 Snyder RE, Paris CB, Vaz AC (2014) How much do marine connectivity fluctuations matter? The American Naturalist 184(4):523–530 Steele JH (1985) A comparison of terrestrial and marine ecological systems. Nature 313(6001):355–358 Tuljapurkar S, Orzack SH (1980a) Population dynamics in variable environments i. long-run growth rates and extinction. Theor Popul Biol 18(3):314–342 Tuljapurkar S, Orzack SH (1980b) Population dynamics in variable environments i. long-run growth rates and extinction. Theor Popul Biol 18(3):314–342 Underwood A, Denley E, Moran M (1983) Experimental analyses of the structure and dynamics of mid-shore rocky intertidal communities in new south wales. Oecologia 56(2-3):202–219 Vasseur DA, Fox JW (2009) Phase-locking and environmental fluctuations generate synchrony in a predator–prey community. Nature 460(7258):1007–1010 Watson JR, Kendall BE, Siegel DA, Mitarai S (2012) Changing seascapes, stochastic connectivity, and marine metapopulation dynamics. The American Naturalist 180(1):99–112 White JW, Botsford LW, Baskett ML, Barnett LA, Barr RJ, Hastings A (2011) Linking models with monitoring data for assessing performance of no-take marine reserves. Front Ecol Environ 9(7):390–399 White JW, Morgan SG, Fisher JL (2014) Planktonic larval mortality rates are lower than widely expected. Ecol 95(12):3344–3353 Williams PD, Hastings A (2013) Stochastic dispersal and population persistence in marine organisms. The American Naturalist 182(2):271–282