Disparities in socioeconomic status and neighborhood characteristics affect all-cause mortality in patients with newly diagnosed hypertension in Korea: a nationwide cohort study, 2002–2013
Tóm tắt
Previous studies have shown that contextual factors and individual socioeconomic status (SES) were associated with mortality in Western developed countries. In Korea, there are few empirical studies that have evaluated the association between SES and health outcomes. We conducted cohort study to investigate the socioeconomic disparity in all-cause mortality for patients newly diagnosed with hypertension in the setting of universal health care coverage. We used stratified random sample of Korean National Health Insurance enrollees (2002–2013). We included patients newly diagnosed with hypertension (n = 28,306) from 2003–2006, who received oral medication to control their hypertension. We generated a frailty model using Cox’s proportional hazard regression to assess risk factors for mortality. A total of 7,825 (27.6%) of the 28,306 eligible subjects died during the study period. Compared to high income patients from advantaged neighborhoods, the adjusted hazard ratio (HR) for high income patients from disadvantaged neighborhoods was 1.10 (95% CI, 1.00–1.20; p-value = 0.05). The adjusted HR for middle income patients who lived in advantaged versus disadvantaged neighborhoods was 1.17 (95% CI, 1.08–1.26) and 1.27 (95% CI, 1.17–1.38), respectively. For low income patients, the adjusted HR for patients who lived in disadvantaged neighborhoods was higher than those who lived in advantaged neighborhoods (HR, 1.35; 95% CI, 1.22–1.49 vs HR, 1.28; 95% CI, 1.16–1.41). Neighborhood deprivation can exacerbate the influence of individual SES on all-cause mortality among patients with newly diagnosed hypertension.
Tài liệu tham khảo
Ezzati M, Lopez AD, Rodgers A, Vander Hoorn S, Murray CJ. Comparative Risk Assessment Collaborating Group. Selected major risk factors and global and regional burden of disease. Lancet. 2002;360(9343):1347–60.
Lim SS, Vos T, Flaxman AD, Danaei G, Shibuya K, Adair-Rohani H, et al. A comparative risk assessment of burden of disease and injury attributable to 67 risk factors and risk factor clusters in 21 regions, 1990-2010: a systematic analysis for the Global Burden of Disease Study 2010. Lancet. 2012;380(9859):2224–60.
Cloutier L, Morris D, Bruneau J, McLean D, Campbell N. World Health Organization celebrates World Health Day, April 7,2013--focusing on hypertension. Can J Cardiovasc Nurs. 2013;23(2):9–11.
Grotto I, Huerta M, Sharabi Y. Hypertension and socioeconomic status. Curr Opin Cardiol. 2008;23(4):335–9.
Morenoff JD, House JS, Hansen BB, Williams DR, Kaplan GA, Hunte HE. Understanding social disparities in hypertension prevalence, awareness, treatment, and control: the role of neighborhood context. Soc Sci Med. 2007;65(9):1853–66.
Cha SH, Park HS, Cho HJ. Socioeconomic disparities in prevalence, treatment, and control of hypertension in middle-aged Koreans. J Epidemiol. 2012;22(5):425–32.
Leng B, Jin Y, Li G, Chen L, Jin N. Socioeconomic status and hypertension: a meta-analysis. J Hypertens. 2015;33(2):221–9.
Kautzky-Willer A, Dorner T, Jensby A, Rieder A. Women show a closer association between educational level and hypertension or diabetes mellitus than males: a secondary analysis from the Austrian HIS. BMC Public Health. 2012;30(12):392.
Erceg M, Ivicević-Uhernik A, Kern J, Vuletić S. Is there any association between blood pressure and education level? The CroHort study. Coll Antropol. 2012;36 Suppl 1:125–9.
Daniel OJ, Adejumo OA, Adejumo EN, Owolabi RS, Braimoh RW. Prevalence of hypertension among urban slum dwellers in Lagos, Nigeria. J Urban Health. 2013;90(6):1016–25.
Sloggett A, Joshi H. Higher mortality in deprived areas: community or personal disadvantage? BMJ. 1994;309(6967):1470–4.
Johnson S, Abonyi S, Jeffery B, Hackett P, Hampton M, McIntosh T, et al. Recommendations for action on the social determinants of health: a Canadian perspective. Lancet. 2008;372(9650):1690–3.
Roos LL, Magoon J, Gupta S, Chateau D, Veugelers PJ. Socioeconomic determinants of mortality in two Canadian provinces: multilevel modelling and neighborhood context. Soc Sci Med. 2004;59(7):1435–47.
Consuegra-Sánchez L, Melgarejo-Moreno A, Galcerá-Tomás J, Alonso-Fernández N, Díaz-Pastor Á, Escudero-García G, et al. Educational Level and Long-term Mortality in Patients With Acute Myocardial Infarction. Rev Esp Cardiol (Engl Ed). 2015;S1885-5857(15):00076–6.
Feinglass J, Rydzewski N, Yang A. The socioeconomic gradient in all-cause mortality for women with breast cancer: findings from the 1998 to 2006 National Cancer Data Base with follow-up through 2011. Ann Epidemiol. 2015;S1047-2797(15):00052–6.
Roos LL, Walld R. Neighbourhood, family and health care. Can J Public Health. 2007;98(Supple1):S54–61.
Yen IH, Kaplan GA. Neighborhood social environment and risk of death: multilevel evidence from the Alameda County Study. Am J Epidemiol. 1999;149(10):898–907.
Veugelers PJ, Yip AM, Kephart G. Proximate and contextual socioeconomic determinants of mortality: multilevel approaches in a setting with universal health care coverage. Am J Epidemiol. 2001;154(8):725–32.
Kim YJ, Jeon JY, Han SJ, Kim HJ, Lee KW, Kim DJ. Effect of socio-economic status on the prevalence of diabetes. Yonsei Med J. 2015;56(3):641–7.
Morgan O, Baker A. Measuring deprivation in England and Wales using 2001 Carstairs scores. Health Stat Q. 2006;31:28–33.
Lee SG. The effect of neighborhood socioeconomic factors on spatial mortality and individual health status [dissertation]. Seoul: Yonsei University;2002.
Charlson ME, Pompei P, Ales KL, MacKenzie CR. A new method of classifying prognostic comorbidity in longitudinal studies: development and validation. J Chronic Dis. 1987;40(5):373–83.
Andersen PK, Klein JP, Zhang MJ. Testing for centre effects in multi-centre survival studies: a Monte Carlo comparison of fixed and random effects tests. Stat Med. 1999;18(12):1489–500.
Andersen PK, Klein JP, Knudsen KM. Tabanera y Palacios R. Estimation of variance in Cox’s regression model with shared gamma frailties. Biometrics. 1997;53(4):1475–84.
Malmström M, Johansson SE, Sundquist J. A hierarchical analysis of long-term illness and mortality in socially deprived areas. Soc Sci Med. 2001;53(3):265–75.
Li X, Sundquist J, Zöller B, Sundquist K. Neighborhood deprivation and lung cancer incidence and mortality: a multilevel analysis from Sweden. J Thorac Oncol. 2015;10(2):256–63.
Vanasse A, Courteau J, Asghari S, Leroux D, Cloutier L. Health inequalities associated with neighbourhood deprivation in the Quebec population with hypertension in primary prevention of cardiovascular disease. Chronic Dis Inj Can. 2014;34(4):181–94.
Hook EB. Letter to the Editor: Re: Neighborhood social environment and risk of death: multilevel evidence from the Alameda County study. Am J Epidemiol. 2000;151(11):1132–3.
Subramanian SV, Belli P, Kawachi I. The macroeconomic determinants of health. Annu Rev Public Health. 2002;23:287–302.
Elstad JI. The psycho‐social perspective on social inequalities in health. Sociol Health Illness. 1998;20(5):598–618.
Boyce WT, Chesterman EA, Winkleby MA. Psychosocial predictors of maternal and infant health among adolescent mothers. Am J Dis Child. 1991;145(3):267–73.
Link BG, Northridge ME, Phelan JC, Ganz ML. Social epidemiology and the fundamental cause concept: on the structuring of effective cancer screens by socioeconomic status. Milbank Q. 1998;76(3):375–402.
Roos LL, Traverse D, Turner D. Delivering prevention: the role of public programs in delivering care to high-risk populations. Med Care. 1999;37(6):JS264–78.
Chang CM, Su YC, Lai NS, Huang KY, Chien SH, Chang YH, et al. The combined effect of individual and neighborhood socioeconomic status on cancer survival rates. PLoS One. 2012;7(8), e44325.
Li X, Sundquist J, Calling S, Zöller B, Sundquist K. Neighborhood deprivation and risk of cervical cancer morbidity and mortality: a multilevel analysis from Sweden. Gynecol Oncol. 2012;127(2):283–9.