Disparification and extinction trade-offs shaped the evolution of Permian to Jurassic Odonata

iScience - Tập 26 - Trang 107420 - 2023
Isabelle Deregnaucourt1,2, Jérémie Bardin1, Loïc Villier1, Romain Julliard2, Olivier Béthoux1
1Centre de Recherche en Paléontologie – Paris (CR2P), Sorbonne Université, MNHN, CNRS, 57 rue Cuvier, CP38, F-75005 Paris, France
2Centre d'Ecologie et des Sciences de la Conservation (CESCO), Sorbonne Université, MNHN, CNRS, 43 rue Buffon, 75005 Paris, France

Tài liệu tham khảo

Raup, 1982, Mass extinctions in the marine fossil record, Science, 215, 1501, 10.1126/science.215.4539.1501 Benton, 1989, Mass extinctions among tetrapods and the quality of the fossil record, Philos. Trans. R. Soc. Lond. B Biol. Sci., 325, 369, 10.1098/rstb.1989.0094 Benton, 2014, Impacts of global warming on Permo-Triassic terrestrial ecosystems, Gondwana Res., 25, 1308, 10.1016/j.gr.2012.12.010 Jarzembowski, 1993, Time flies: the geological record of insects, Geol. Today, 9, 218, 10.1111/j.1365-2451.1993.tb01067.x Zherikhin, 2002, Ecological history of the terrestrial insects, 331 Labandeira, 1993, Insect diversity in the fossil record, Science, 261, 310, 10.1126/science.11536548 Nicholson, 2015, Changes to the fossil record of insects through fifteen years of discovery, PLoS One, 10, 10.1371/journal.pone.0128554 Jouault, 2022, Multiple drivers and lineage-specific insect extinctions during the Permo–Triassic, Nat. Commun., 13, 7512, 10.1038/s41467-022-35284-4 Labandeira, 2005, The fossil record of insect extinction: new approaches and future directions, Am. Entomol., 51, 14, 10.1093/ae/51.1.14 Schachat, 2021, Are insects heading toward their first mass extinction? Distinguishing turnover from crises in their fossil record, Ann. Entomol. Soc. Am., 114, 99, 10.1093/aesa/saaa042 Alroy, 2008, Dynamics of origination and extinction in the marine fossil record, Proc. Natl. Acad. Sci. USA, 105, 11536, 10.1073/pnas.0802597105 MacLeod, 1997, The Cretaceous-Tertiary biotic transition, J. Geol. Soc., 154, 265, 10.1144/gsjgs.154.2.0265 Briggs, 2005, Wonderful strife: systematics, stem groups, and the phylogenetic signal on the Cambrian radiation, Paleobiology, 31, 94, 10.1666/0094-8373(2005)031[0094:WSSSGA]2.0.CO;2 Blagoderov, 2007, How time flies for flies: diverse Diptera from the Triassic of Virginia and early radiation of the order, Am. Mus. Novit., 3572, 1, 10.1206/0003-0082(2007)509[1:HTFFFD]2.0.CO;2 Béthoux, 2009, Gaps and nodes between fossil and extant insects, Syst. Entomol., 34, 599, 10.1111/j.1365-3113.2009.00484.x Foote, 1993, Discordance and concordance between morphological and taxonomic diversity, Paleobiology, 19, 185, 10.1017/S0094837300015864 Ciampaglio, 2001, Detecting changes in morphospace occupation patterns in the fossil record: characterization and analysis of measures of disparity, Paleobiology, 27, 695, 10.1666/0094-8373(2001)027<0695:DCIMOP>2.0.CO;2 Guillerme, 2020, Disparities in the analysis of morphological disparity, Biol. Lett., 16, 10.1098/rsbl.2020.0199 Gould, 1989 Harmon, 2010, Early bursts of body size and shape evolution are rare in comparative data, Evolution, 64, 2385 Hughes, 2013, Clades reach highest morphological disparity early in their evolution, Proc. Natl. Acad. Sci. USA, 110, 13875, 10.1073/pnas.1302642110 Prentice, 2011, Evolution of morphological disparity in pterosaurs, J. Syst. Palaeontol., 9, 337, 10.1080/14772019.2011.565081 Friedman, 2009, Ecomorphological selectivity among marine teleost fishes during the end-Cretaceous extinction, Proc. Natl. Acad. Sci. USA, 106, 5218, 10.1073/pnas.0808468106 Friedman, 2010, Explosive morphological diversification of spiny-finned teleost fishes in the aftermath of the end-Cretaceous extinction, Proc. Biol. Sci., 277, 1675 Bapst, 2012, Graptoloid diversity and disparity became decoupled during the Ordovician mass extinction, Proc. Natl. Acad. Sci. USA, 109, 3428, 10.1073/pnas.1113870109 Foote, 1997, The evolution of morphological diversity, Annu. Rev. Ecol. Systemat., 28, 129, 10.1146/annurev.ecolsys.28.1.129 Foote, 1997, Sampling, taxonomic description, and our evolving knowledge of morphological diversity, Paleobiology, 23, 181, 10.1017/S009483730001678X Wills, 1994, Disparity as an evolutionary index: a comparison of Cambrian and Recent Arthropods, Paleobiology, 20, 93, 10.1017/S009483730001263X Foote, 1993, Contribution of individual taxa to overall morphological disparity, Paleobiology, 19, 403, 10.1017/S0094837300014056 Nel, 2018, Diversification of insects since the Devonian: a new approach based on morphological disparity of mouthparts, Sci. Rep., 8, 3516, 10.1038/s41598-018-21938-1 Labandeira, 2019, The fossil record of insect mouthparts: innovation, functional convergence, and associations with other organisms, 567 Lorenz, 2017, Geometric morphometrics in mosquitoes: What has been measured?, Infect. Genet. Evol., 54, 205, 10.1016/j.meegid.2017.06.029 Blanke, 2018, Analysis of modularity and integration suggests evolution of dragonfly wing venation mainly in response to functional demands, J. R. Soc. Interface, 15, 10.1098/rsif.2018.0277 Perrard, 2014, Evolution of wing shape in hornets: why is the wing venation efficient for species identification?, J. Evol. Biol., 27, 2665, 10.1111/jeb.12523 Viertler, 2022, Classifying fossil Darwin wasps (Hymenoptera: Ichneumonidae) with geometric morphometrics of fore wings, PLoS One, 17, 10.1371/journal.pone.0275570 Bailey, 2019, Testing the role of trait reversal in evolutionary diversification using song loss in wild crickets, Proc. Natl. Acad. Sci. USA, 116, 8941, 10.1073/pnas.1818998116 Kukalová-Peck, 1991, Fossil history and the evolution of hexapod structures, 141 Riek, 1984, A new interpretation of dragonfly wing venation based upon Early Upper Carboniferous fossils from Argentina (Insecta, Odonatoidea) and basic character states in pterygota wings, Can. J. Zool., 62, 1150, 10.1139/z84-166 Bechly, 1996, Volume 2, 1 Béthoux, 2015, The Late Carboniferous Triplosoba pulchella is not a fly in the ointment but a stem-mayfly, Syst. Entomol., 40, 342, 10.1111/syen.12103 Carpenter, 1992, Superclass Hexapoda, xxii+655 Grimaldi, 2005 Petrulevičius, 2016, New basal Odonatoptera (Insecta) from the lower Carboniferous (Serpukhovian) of Argentina, Arq. Entomolóxicos, 16, 341 Fossilworks, 2019 Nel, 2005, New Mesozoic Protomyrmeleontidae (Insecta: Odonatoptera: Archizygoptera) from Asia with a new phylogenetic analysis, J. Syst. Palaeontol., 3, 1 Nel, 2012, Systematics and evolution of Palaeozoic and Mesozoic damselfly-like Odonatoptera of the ‘Protozygopteran’grade, J. Paleontol., 86, 81, 10.1666/11-020.1 Nel, 2001, The Permo-Triassic Odonatoptera of the “protodonate” grade (Insecta: Odonatoptera), Ann. Société Entomol. Fr. NS, 37, 501 Deregnaucourt, 2021, The wing venation of a new fossil species, reconstructed using geometric morphometrics, adds to the rare fossil record of Triassic Gondwanian Odonata, Arthropod Struct. Dev., 63, 10.1016/j.asd.2021.101056 Gould, 1993, How to analyze Burgess Shale disparity: a reply to Ridley, Paleobiology, 19, 522, 10.1017/S0094837300014135 Lee, 1992, Cambrian and Recent morphological disparity, Science, 258, 1816, 10.1126/science.258.5089.1816.b Briggs, 1992, Morphological disparity in the Cambrian, Science, 256, 1670, 10.1126/science.256.5064.1670 Briggs, 1989, The early radiation and relationships of the major arthropod groups, Science, 246, 241, 10.1126/science.246.4927.241 Lofgren, 2003, Morphological diversity of Carboniferous arthropods and insights on disparity patterns through the Phanerozoic, Paleobiology, 29, 349, 10.1666/0094-8373(2003)029<0349:MDOCAA>2.0.CO;2 Deline, 2018, Evolution of metazoan morphological disparity, Proc. Natl. Acad. Sci. USA, 115, E8909, 10.1073/pnas.1810575115 Oyston, 2016, Why should we investigate the morphological disparity of plant clades?, Ann. Bot., 117, 859, 10.1093/aob/mcv135 Benson, 2012, High diversity, low disparity and small body size in Plesiosaurs (Reptilia, Sauropterygia) from the Triassic–Jurassic boundary, PLoS One, 7, 10.1371/journal.pone.0031838 Foote, 1991, Morphologic patterns of diversification: examples from trilobites, Palaeontology, 34, 461 Wills, 1998, A phylogeny of recent and fossil Crustacea derived from morphological characters, 189 Nel, 2009, Revision of Permo-Carboniferous griffenflies (Insecta: Odonatoptera: Meganisoptera) based upon new species and redescription of selected poorly known taxa from Eurasia, pala., 289, 89, 10.1127/pala/289/2009/89 Li, 2013, Early Pennsylvanian Odonatoptera from the Xiaheyan locality (Ningxia, China): new material, taxa, and perspectives, Foss. Rec., 16, 117, 10.1002/mmng.201300006 Pritykina, 1981, Novye triasovye strekozy srednej Azii [New Triassic dragonflies from Central Asia], 5 Zheng, 2017, The first Late Triassic Chinese triadophlebiomorphan (Insecta: Odonatoptera): biogeographic implications, Sci. Rep., 7, 1476, 10.1038/s41598-017-01710-7 Zhao, 2021, Early evolution of beetles regulated by the end-Permian deforestation, Elife, 10, 10.7554/eLife.72692 Condamine, 2016, Global pattern of insect diversification: towards a reconciliation of fossil and molecular evidence, Sci. Rep., 6, 19208, 10.1038/srep19208 Kohli, 2021, Evolutionary history and divergence times of Odonata (dragonflies and damselflies) revealed through transcriptomics, iScience, 24, 10.1016/j.isci.2021.103324 Corbet, 2004 Wootton, 2008, Evolution, diversification, and mechanics of dragonfly wings, 261 Donoughe, 2011, Resilin in dragonfly and damselfly wings and its implications for wing flexibility, J. Morphol., 272, 1409, 10.1002/jmor.10992 2020 Sharov, 1968, Filogeniya orthopteroidnykh nasekomykh [Phylogeny of orthopteroid insects], Tr. Paleontol. Instituta Akad. Nauk SSSR, 118, 1 Voigt, 2006, Die Fossil-Lagerstätte Madygen: ein Beitrag zur Geologie und Paläontologie der Madygen-Formation (Mittel- bis Ober-Trias, SW-Kirgisistan, Zentralasien), Hallesches Jahrb. Geowiss., 22, 85 Bechly, 2007 Tierney, 2020, The Triassic Mesophlebiidae, a little closer to the crown of the Odonata (Insecta) than other ‘triassolestids, Alcheringa, 44, 279, 10.1080/03115518.2020.1730964 Deregnaucourt, 2021, The wing venation of the Protomyrmeleontidae (Insecta: Odonatoptera) reconsidered thanks to a new specimen from Molteno (Triassic; South Africa), Hist. Biol., 33, 306, 10.1080/08912963.2019.1616291 Nel, 2022, The Odonatoptera: a clade that contains 99% of Odonata fossil diversity, 279 Deregnaucourt, 2017, A new triadotypid insect from the Late Triassic of South Africa, Acta Palaeontol. Pol., 62, 613, 10.4202/app.00345.2017 Jacquelin, 2018, New insights on basivenal sclerites using 3D tools and homology of wing veins in Odonatoptera (Insecta), Sci. Rep., 8, 238, 10.1038/s41598-017-18615-0 Riek, 1976, New Upper Permian insects from Natal, South Africa, Ann. Natal. Mus., 22, 755 Nel, 1996, Voltzialestes triasicus, gen. nov., sp. nov., le premier Odonata Protozygoptera du Trias inférieur des Vosges (France), Curationis, 19, 25 Henrotay, 1997, New Protomyrmeleontidae damselflies from the Triassic of Australia and the Liassic of Luxembourg, with the description of Tillyardomyrmeleon petermilleri gen. nov. & spec. nov. (Archizygoptera: Protomyrmeleontidae), Odonatologica, 26, 395 Pritykina, 1970, Triassic and Jurassic dragonflies of the Liassophlebiidae from Soviet Central Asia, Paleontol. J., 4, 91 Nel, 1993, Les “Anisozygoptera” fossiles. Phylogénie et classification (Odonata). Martinia hors-série, 3, 1 Tillyard, 1925 Ambrose, 2001, The lithostratigraphy of the Blue Lias Formation (Late Rhaetian—Early Sinemurian) in the southern part of the English Midlands, Proc. Geol. Assoc., 112, 97, 10.1016/S0016-7878(01)80020-1 Whalley, 1985, The systematics and palaeogeography of the Lower Jurassic insects of Dorset, England, Bull. Br. Mus. Nat. Hist. Geol., 39, 107 Ilyina, 1991, Triassic deposits of Northern Sub-Urals, Sci. Rep. Komi Sci. Cent. Ural Acad. Sci., 271, 1 Martynov, 1932, New Permian Palaeoptera with the discussion of some problems of their evolution, Trav. Inst. Paléozoologique Académie Sci. URSS Mosc., 1, 1 Ludbrook, 1998, Why permutation tests are superior to t and F tests in biomedical research, Am. Stat., 52, 127 Sievert, 2020