Disordered zinc in Zn4Sb3 with phonon-glass and electron-crystal thermoelectric properties
Tóm tắt
Từ khóa
Tài liệu tham khảo
Caillat, T., Fleurial, J.P. & Borshchevsky, A. Preparation and thermoelectric properties of semiconducting Zn4Sb3 . J. Phys. Chem. Solids 58, 1119–1125 (1997).
Skrabek, E.A. & Trimmer, D.S. in Thermoelectric Handbook (ed. Rowe, D.M.) 267–275 (CRC, Boca Raton, 1995).
Uher, C. in Recent Trends in Thermoelectric Materials Research I (ed. Tritt, T.M.) 139–253 (Academic Press, San Diego, 2001).
Sales, B.C., Mandrus, D. & Williams, R.K. Filled skutterudite antimonides: A new class of thermoelectric materials. Science 272, 1325–1328 (1996).
Slack, G.A. in Thermoelectric Handbook (ed. Rowe, M.) 407–440 (CRC, Boca Raton, 1995).
Sales, B.C. Electron crystals and phonon glasses: a new path to improved thermoelectric materials. Mater. Res. Soc. Bull. 23, 15–21 (1998).
Mayer, H.W., Mikhail, I. & Schubert, K. Phases of ZnSbN and CdSbN mixtures. J. Less-Common Metals 59, 43–52 (1978).
Caillat, T., Borshchevsky, A. & Fleurial, J.-P. in Thermoelectric Materials - New Directions and Approaches. Symposium (eds Tritt, T.M., Kanatzidis, M.G., Lyon, H.B. Jr & Mahan, G.D.) 103–108 (Materials Research Society, San Francisco, California, 1997).
Tanaka, H. et al. ENIGMA: maximum-entropy method program package for huge systems. J. Appl. Crystallogr. 35, 282–286 (2002).
Bokii, G.B. & Klevzova, R.F. X-ray structure investigation of the beta-phase in the zinc-antimony system. Zh. Strukt. Khim. 6, 866 (English-translated pages 830–834) (1965).
Izard, V., Record, M.C., Tedenac, J.C. & Fries, S.G. Discussion on the stability of the antimony-zinc binary phases. CALPHAD 25, 567–581 (2001).
Kim, S.G., Mazin, II & Singh, D.J. First-principles study of Zn-Sb thermoelectrics. Phys. Rev. B 57, 6199–6203 (1998).
Kauzlarich, S.M. (ed.) Chemistry, Structure, and Bonding of Zintl Phases and Ions (VCH, New York, 1996).
Papoian, G.A. & Hoffmann, R. Hypervalent bonding in one, two, and three dimensions: Extending the Zintl-Klemm concept to nonclassical electron-rich networks. Angew. Chem. Intl Edn 39, 2409–2448 (2000).
Chung, D.Y. et al. CsBi4Te6: A high-performance thermoelectric material for low-temperature applications. Science 287, 1024–1027 (2000).
Miller, R.C. in Thermoelectricity: Science and Engineering (eds. Heikes, R.R. & Ure, R.W.) 405–407 (Interscience, New York, 1961).
Funke, K. in Superionic Solids and Solid Electrolytes Recent Trends (eds Laskar, A.L. & Chandra, S.) 569–629 (Academic, San Diego, 1989).
Souma, T., Nakamoto, G. & Kurisu, M. Low-temperature thermoelectric properties of alpha- and beta- Zn4Sb3 bulk crystals prepared by a gradient freeze method and a spark plasma sintering method. J. Alloy. Comp. 340, 275–280 (2002).
Shaver, P.J. & Blair, J. Thermal and electronic transport properties of p-Type ZnSb. Phys. Rev. 141, 649–663 (1966).
Yvon, K., Baillif, R. & Flukiger, R. Positional disorder and nonstoichiometry in Cu2-XMo3S4 compounds 2: Triclinic low-temperature structure of Cu2-XMo3S4 . Acta Crystallogr. B 35, 2859–2863 (1979).
Caillat, T., Fleurial, J.-P. & Snyder, G.J. Potential of Chevrel phases for thermoelectric applications. Solid State Sci. 1, 535–544 (1999).
Cahill, D.G., Watson, S.K. & Pohl, R.O. Lower limit to thermal conductivity of disordered crystals. Phys. Rev. B 46, 6131–6140 (1992).
Sheldrick, G.M. SHELXL-97 A Program for Crystal Structure Refinement (Univ. Göttingen, Germany, 1997).
Nishibori, E. et al. The large Debye-Scherrer camera installed at SPring-8 BL02B2 for charge density studies. Nucl. Instrum. Methods A 467, 1045–1048 (2001).