Disordered zinc in Zn4Sb3 with phonon-glass and electron-crystal thermoelectric properties

Nature Materials - Tập 3 Số 7 - Trang 458-463 - 2004
G. Jeffrey Snyder1, Mogens Christensen2, Eiji Nishibori3, T. Caillat4, Bo B. Iversen2
1California Institute of Technology, Materials Science, 1200 East California Boulevard, Pasadena, 91125, California, USA
2Department of Chemistry, University of Aarhus, Aarhus, DK-8000, Denmark
3Department of Applied Physics, Nagoya University, Nagoya 464-8603, Japan
4Jet Propulsion Laboratory/California Institute of Technology, 4800 Oak Grove Drive, Pasadena, 91109, California, USA

Tóm tắt

Từ khóa


Tài liệu tham khảo

Caillat, T., Fleurial, J.P. & Borshchevsky, A. Preparation and thermoelectric properties of semiconducting Zn4Sb3 . J. Phys. Chem. Solids 58, 1119–1125 (1997).

Skrabek, E.A. & Trimmer, D.S. in Thermoelectric Handbook (ed. Rowe, D.M.) 267–275 (CRC, Boca Raton, 1995).

Uher, C. in Recent Trends in Thermoelectric Materials Research I (ed. Tritt, T.M.) 139–253 (Academic Press, San Diego, 2001).

Sales, B.C., Mandrus, D. & Williams, R.K. Filled skutterudite antimonides: A new class of thermoelectric materials. Science 272, 1325–1328 (1996).

Slack, G.A. in Thermoelectric Handbook (ed. Rowe, M.) 407–440 (CRC, Boca Raton, 1995).

Sales, B.C. Electron crystals and phonon glasses: a new path to improved thermoelectric materials. Mater. Res. Soc. Bull. 23, 15–21 (1998).

Mayer, H.W., Mikhail, I. & Schubert, K. Phases of ZnSbN and CdSbN mixtures. J. Less-Common Metals 59, 43–52 (1978).

Caillat, T., Borshchevsky, A. & Fleurial, J.-P. in Thermoelectric Materials - New Directions and Approaches. Symposium (eds Tritt, T.M., Kanatzidis, M.G., Lyon, H.B. Jr & Mahan, G.D.) 103–108 (Materials Research Society, San Francisco, California, 1997).

Tanaka, H. et al. ENIGMA: maximum-entropy method program package for huge systems. J. Appl. Crystallogr. 35, 282–286 (2002).

Bokii, G.B. & Klevzova, R.F. X-ray structure investigation of the beta-phase in the zinc-antimony system. Zh. Strukt. Khim. 6, 866 (English-translated pages 830–834) (1965).

Izard, V., Record, M.C., Tedenac, J.C. & Fries, S.G. Discussion on the stability of the antimony-zinc binary phases. CALPHAD 25, 567–581 (2001).

Kim, S.G., Mazin, II & Singh, D.J. First-principles study of Zn-Sb thermoelectrics. Phys. Rev. B 57, 6199–6203 (1998).

Kauzlarich, S.M. (ed.) Chemistry, Structure, and Bonding of Zintl Phases and Ions (VCH, New York, 1996).

Papoian, G.A. & Hoffmann, R. Hypervalent bonding in one, two, and three dimensions: Extending the Zintl-Klemm concept to nonclassical electron-rich networks. Angew. Chem. Intl Edn 39, 2409–2448 (2000).

Rowe, D.M. (ed.) CRC Handbook of Thermoelectrics (CRC, Boca Raton, 1995).

Chung, D.Y. et al. CsBi4Te6: A high-performance thermoelectric material for low-temperature applications. Science 287, 1024–1027 (2000).

Miller, R.C. in Thermoelectricity: Science and Engineering (eds. Heikes, R.R. & Ure, R.W.) 405–407 (Interscience, New York, 1961).

Funke, K. in Superionic Solids and Solid Electrolytes Recent Trends (eds Laskar, A.L. & Chandra, S.) 569–629 (Academic, San Diego, 1989).

Souma, T., Nakamoto, G. & Kurisu, M. Low-temperature thermoelectric properties of alpha- and beta- Zn4Sb3 bulk crystals prepared by a gradient freeze method and a spark plasma sintering method. J. Alloy. Comp. 340, 275–280 (2002).

Shaver, P.J. & Blair, J. Thermal and electronic transport properties of p-Type ZnSb. Phys. Rev. 141, 649–663 (1966).

Yvon, K., Baillif, R. & Flukiger, R. Positional disorder and nonstoichiometry in Cu2-XMo3S4 compounds 2: Triclinic low-temperature structure of Cu2-XMo3S4 . Acta Crystallogr. B 35, 2859–2863 (1979).

Caillat, T., Fleurial, J.-P. & Snyder, G.J. Potential of Chevrel phases for thermoelectric applications. Solid State Sci. 1, 535–544 (1999).

Cahill, D.G., Watson, S.K. & Pohl, R.O. Lower limit to thermal conductivity of disordered crystals. Phys. Rev. B 46, 6131–6140 (1992).

Sheldrick, G.M. SHELXL-97 A Program for Crystal Structure Refinement (Univ. Göttingen, Germany, 1997).

Nishibori, E. et al. The large Debye-Scherrer camera installed at SPring-8 BL02B2 for charge density studies. Nucl. Instrum. Methods A 467, 1045–1048 (2001).

Takata, M., Nishibori, E. & Sakata, M. Charge density studies utilizing powder diffraction and MEM. Exploring of high Tc superconductors, C-60 superconductors and manganites. Z. Kristall. 216, 71–86 (2001).