Dislocation locking versus easy glide in titanium and zirconium

Nature Materials - Tập 14 Số 9 - Trang 931-936 - 2015
Emmanuel Clouet1, D. Caillard2, Nermine Chaari1, F. Onimus1, David Rodney3
1CEA-Direction des Energies (ex-Direction de l'Energie Nucléaire)
2Centre d'élaboration de matériaux et d'études structurales
3Institut Lumière Matière [Villeurbanne]

Tóm tắt

Từ khóa


Tài liệu tham khảo

Peierls, R. The size of a dislocation. Proc. Phys. Soc. 52, 34–37 (1940).

Nabarro, F. R. N. Dislocations in a simple cubic lattice. Proc. Phys. Soc. 59, 256–272 (1947).

Hirth, J. P. & Lothe, J. Theory of Dislocations 2nd edn (Wiley, 1982).

Legrand, B. Relation between the electronic structure and ease of gliding in hexagonal close-packed metals. Philos. Mag. B 49, 171–184 (1984).

Caillard, D. & Martin, J. L. Thermally Activated Mechanisms in Crystal Plasticity (Pergamon, 2003).

Domain, C. Ab initio modelling of defect properties with substitutional and interstitials elements in steels and Zr alloys. J. Nucl. Mater. 351, 1–19 (2006).

Clouet, E. Screw dislocation in zirconium: An ab initio study. Phys. Rev. B 86, 144104 (2012).

Ghazisaeidi, M. & Trinkle, D. Core structure of a screw dislocation in Ti from density functional theory and classical potentials. Acta Mater. 60, 1287–1292 (2012).

Tarrat, N. et al. Screw dislocation in hcp Ti: DFT dislocation excess energies and metastable core structures. Modelling Simul. Mater. Sci. Eng. 22, 055016 (2014).

Biget, M. P. & Saada, G. Low-temperature plasticity of high-purity α-titanium single crystals. Philos. Mag. A 59, 747–757 (1989).

Naka, S., Lasalmonie, A., Costa, P. & Kubin, L. P. The low-temperature plastic deformation of α titanium and the core structure of a-type screw dislocations. Philos. Mag. A 57, 717–740 (1988).

Guyot, P. & Dorn, J. E. A critical review of the Peierls mechanism. Can. J. Phys. 45, 983–1016 (1967).

Farenc, S., Caillard, D. & Couret, A. An in situ study of prismatic glide in α titanium at low temperatures. Acta Metall. Mater. 41, 2701–2709 (1993).

Farenc, S., Caillard, D. & Couret, A. A new model for the peak of activation area of α titanium. Acta Metall. Mater. 43, 3669–3678 (1995).

Šob, M., Kratochvíl, J. & Kroupa, F. Theory of strengthening of alpha titanium by interstitial solutes. Czech. J. Phys. B 25, 872–890 (1975).

Naka, S., Kubin, L. P. & Perrier, C. The plasticity of titanium at low and medium temperatures. Philos. Mag. A 63, 1035–1043 (1991).

Chaari, N., Clouet, E. & Rodney, D. First-principles study of secondary slip in zirconium. Phys. Rev. Lett. 112, 075504 (2014).

Chaari, N., Clouet, E. & Rodney, D. First order pyramidal slip of screw dislocations in zirconium. Metall. Mater. Trans. A 45, 5898–5905 (2014).

Rapperport, K. E. J. & Hartley, C. S. Deformation modes of zirconium at 77°, 575°, and 1075°K. Trans. Am. Inst. Min. Eng. 218, 869–876 (1960).

Mills, D. & Craig, G. B. The plastic deformation of zirconium–oxygen alloy single crystals in the range 77 to 950 K. Trans. Am. Inst. Min. Eng. 242, 1881–1890 (1968).

Soo, P. & Higgins, G. T. The deformation of zirconium–oxygen single crystals. Acta Metall. 16, 177–186 (1968).

Akhtar, A. & Teghtsoonian, A. Plastic deformation of zirconium single crystals. Acta Metall. 19, 655–663 (1971).

Bacon, D. & Vitek, V. Atomic-scale modeling of dislocations and related properties in the hexagonal-close-packed metals. Metall. Mater. Trans. A 33, 721–733 (2002).

Kubin, L. Dislocations, Mesoscale Simulations and Plastic Flow (Oxford Series on Materials Modelling, Oxford University Press, 2013).

Weinberger, C. R., Tucker, G. J. & Foiles, S. M. Peierls potential of screw dislocations in bcc transition metals: Predictions from density functional theory. Phys. Rev. B 87, 054114 (2013).

Dezerald, L. et al. Ab initio modeling of the two-dimensional energy landscape of screw dislocations in bcc transition metals. Phys. Rev. B 89, 024104 (2014).

Rao, S., Venkateswaran, A. & Letherwood, M. Molecular statics and molecular dynamics simulations of the critical stress for motion of screw dislocations in α-Ti at low temperatures using a modified embedded atom method potential. Acta Mater. 61, 1904–1912 (2013).

Yu, Q. et al. Origin of dramatic oxygen solute strengthening effect in titanium. Science 347, 635–639 (2015).

Giannozzi, P. et al. QUANTUM ESPRESSO: A modular and open-source software project for quantum simulations of materials. J. Phys. Condens. Matter 21, 395502 (2009).

Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996).

Henkelman, G. & Jónsson, H. Improved tangent estimate in the nudged elastic band method for finding minimum energy paths and saddle points. J. Chem. Phys. 113, 9978–9985 (2000).

Ducastelle, F. Order and Phase Stability in Alloys (North-Holland, 1991).

Hartley, C. S. & Mishin, Y. Characterization and visualization of the lattice misfit associated with dislocation cores. Acta Mater. 53, 1313–1321 (2005).