Dislocation electron tomography: A technique to characterize the dislocation microstructure evolution in zirconium alloys under irradiation

Acta Materialia - Tập 213 - Trang 116964 - 2021
Alexandre Mussi1, Ahmed Addad1, Fabien Onimus2
1Univ. Lille, CNRS, INRAE, Centrale Lille, UMR 8207 - UMET - Unité Matériaux et Transformations, F-59000 Lille, France
2Université Paris-Saclay, CEA, Service de Recherches Métallurgiques Appliquées, Gif-sur-Yvette 91191, France

Tài liệu tham khảo

Franklin, 1988, Implications of Zircaloy creep and growth to light water reactor performance, J. Nucl. Mater., 159, 12, 10.1016/0022-3115(88)90082-7 Holt, 2008, In-reactor deformation of cold-worked Zr–2.5Nb pressure tubes, J. Nucl. Mater., 372, 182, 10.1016/j.jnucmat.2007.02.017 Adamson, 2019, Irradiation creep and growth of zirconium alloys: a critical review, J. Nucl. Mater., 521, 167, 10.1016/j.jnucmat.2019.04.021 Onimus, 2020, Radiation effects in zirconium alloys, Compr. Nucl. Mater., 1 Onimus, 2020, Irradiation creep in materials, Compr. Nucl. Mater., 310, 10.1016/B978-0-12-803581-8.11645-5 Fidleris, 1988, The irradiation creep and growth phenomena, J. Nucl. Mater., 159, 22, 10.1016/0022-3115(88)90083-9 Franklin, 1983, ASTM STP 815 Rogerson, 1988, Irradiation growth in zirconium and its alloys, J. Nucl. Mater., 159, 43, 10.1016/0022-3115(88)90084-0 Matthews, 1988, Irradiation creep models — an overview, J. Nucl. Mater., 159, 257, 10.1016/0022-3115(88)90097-9 Gittus, 1975 Gittus, 1972, Theory of dislocation-creep due to the frenkel defects or interstitialcies produced by bombardment with energetic particles, Philos. Mag., 25, 345, 10.1080/14786437208226809 Nichols, 1987, Mechanistic modeling of Zircaloy deformation and fracture in fuel element analysis, Zircon. Nucl. Ind. Seventh Int. Symp., ASTM STP 939, 5 Nichols, 1969, Theory of the creep of zircaloy during neutron irradiation, J. Nucl. Mater., 30, 249, 10.1016/0022-3115(69)90241-4 Bullough, 1975, The stress-induced point defect-dislocation interaction and its relevance to irradiation creep, Philos. Mag., 31, 855, 10.1080/14786437508229635 Heald, 1974, Steady-state irradiation creep, Philos. Mag., 29, 1075, 10.1080/14786437408226592 Wolfer, 1976, Diffusion of vacancies and interstitials to edge dislocations, J. Appl. Phys., 47, 791, 10.1063/1.322710 Woo, 1984, Irradiation creep due to elastodiffusion, J. Nucl. Mater., 120, 55, 10.1016/0022-3115(84)90170-3 Carpenter, 1973, Vacancy precipitation in zirconium alloys, Acta Metall., 21, 1207, 10.1016/0001-6160(73)90161-2 Buckley, 1980, Dislocation loop nucleation and growth in zirconium-2.5 wt% niobium alloy during 1 MeV electron irradiation, J. Nucl. Mater., 90, 169, 10.1016/0022-3115(80)90254-8 Griffiths, 1983, Electron damage in zirconium - II, J. Nucl. Mater., 115, 313, 10.1016/0022-3115(83)90322-7 Gaumé, 2017, Microstructure evolution of recrystallized Zircaloy-4 under charged particles irradiation, J. Nucl. Mater., 495, 516, 10.1016/j.jnucmat.2017.09.004 Barnard, 2006, High-resolution three-dimensional imaging of dislocations, Science, 313, 319, 10.1126/science.1125783 Feng, 2020, TEM-based dislocation tomography: challenges and opportunities, Curr. Opin. Solid State Mater. Sci., 24, 10.1016/j.cossms.2020.100833 Liu, 2014, Electron tomography of dislocation structures, Mater. Charact., 87, 1, 10.1016/j.matchar.2013.09.016 Long, 2018, A tomographic TEM study of tension-compression asymmetry response of pyramidal dislocations in a deformed Zr-2.5 Nb alloy, Scr. Mater., 153, 94, 10.1016/j.scriptamat.2018.04.043 Feng, 2017, Electron tomography of dislocations in an Al-Cu-Mg alloy, IOP Conf. Ser. Mater. Sci. Eng., 219, 10.1088/1757-899X/219/1/012018 Onimus, 2012, In situ TEM observation of interactions between gliding dislocations and prismatic loops in Zr-ion irradiated zirconium alloys, Prog. Nucl. Energy, 57, 77, 10.1016/j.pnucene.2011.10.005 Tewari, 2020, Zirconium and its alloys: properties and characteristics, Compr. Nucl. Mater., 284, 10.1016/B978-0-12-803581-8.11735-7 Stoller, 2013, On the use of SRIM for computing radiation damage exposure, Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. At., 310, 75, 10.1016/j.nimb.2013.05.008 Ziegler, 2010, SRIM – the stopping and range of ions in matter (2010), Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. At., 268, 1818, 10.1016/j.nimb.2010.02.091 Mussi, 2017, Hardening mechanisms in olivine single crystal deformed at 1090°C: an electron tomography study, Philos. Mag., 97, 3172, 10.1080/14786435.2017.1367858 Phillips, 2011, Diffraction contrast STEM of dislocations: Imaging and simulations, Ultramicroscopy, 111, 1483, 10.1016/j.ultramic.2011.07.001 Phillips, 2011, Systematic row and zone axis STEM defect image simulations, Philos. Mag., 91, 2081, 10.1080/14786435.2010.547526 Mussi, 2014, Characterization of the glide planes of the [001] screw dislocations in olivine using electron tomography, Phys. Chem. Miner., 41, 537, 10.1007/s00269-014-0665-1 Rebled, 2011, A new approach for 3D reconstruction from bright field TEM imaging: beam precession assisted electron tomography, Ultramicroscopy, 111, 1504, 10.1016/j.ultramic.2011.06.002 Hata, 2011, High-angle triple-axis specimen holder for three-dimensional diffraction contrast imaging in transmission electron microscopy, Ultramicroscopy, 111, 1168, 10.1016/j.ultramic.2011.03.021 Herman, 1976, Convolution reconstruction techniques for divergent beams, Comput. Biol. Med., 6, 259, 10.1016/0010-4825(76)90065-2 Radon, 1983, Über die Bestimmung von Funktionen durch ihre Integralwerte längs gewisser Mannigfaltigkeiten, Comput. Tomogr., 71, 10.1090/psapm/027/692055 Messaoudi, 2007, TomoJ: tomography software for three-dimensional reconstruction in transmission electron microscopy, BMC Bioinformatics, 8, 288, 10.1186/1471-2105-8-288 Pettersen, 2004, UCSF Chimera?A visualization system for exploratory research and analysis, J. Comput. Chem., 25, 1605, 10.1002/jcc.20084 Mussi, 2016, Transmission electron microscopy of dislocations in cementite deformed at high pressure and high temperature, Philos. Mag., 96, 1773, 10.1080/14786435.2016.1177670 Kacher, 2014, In situ and tomographic analysis of dislocation/grain boundary interactions in α-titanium, Philos. Mag., 94, 814, 10.1080/14786435.2013.868942 Mussi, 2015, Characterization of dislocation interactions in olivine using electron tomography, Philos. Mag., 95, 335, 10.1080/14786435.2014.1000996 Mussi, 2015, On the deformation mechanism of olivine single crystals at lithospheric temperatures: an electron tomography study, Eur. J. Mineral., 27, 707, 10.1127/ejm/2015/0027-2481 Clouet, 2015, Dislocation locking versus easy glide in titanium and zirconium, Nat. Mater., 14, 931, 10.1038/nmat4340 Chaari, 2017, Oxygen - Dislocation interaction in zirconium from first principles, Acta Mater., 132, 416, 10.1016/j.actamat.2017.05.008 Jostsons, 1977, The nature of dislocation loops in neutron irradiated zirconium, J. Nucl. Mater., 66, 236, 10.1016/0022-3115(77)90113-1 Kelly, 1973, The characterization of dislocation loops in neutron irradiated zirconium, Philos. Mag., 28, 415, 10.1080/14786437308217463 Northwood, 1979, Characterization of neutron irradiation damage in zirconium alloys — an international ‘round-robin’ experiment, J. Nucl. Mater., 79, 379, 10.1016/0022-3115(79)90103-X Bacon, 1965, The elastic energies of symmetrical dislocation loops, Philos. Mag., 12, 195, 10.1080/14786436508224960 Wolfer, 2004, Motion and rotation of small glissile dislocation loops in stress fields, Phys. Rev. Lett., 92, 10.1103/PhysRevLett.92.085507 Dai, 2017, The habit plane of <a>-type dislocation loops in α-zirconium: an atomistic study, Philos. Mag., 97, 944, 10.1080/14786435.2017.1287441 Serra, 2013, Atomic-level computer simulation of the interaction between 1/3<11-20>{1-100} dislocations and 1/3<11-20>interstitial loops in alpha-zirconium, Model. Simul. Mater. Sci. Eng., 21 Serrano, 2006, Helical dislocations as vacancy sinks in β phase Cu–Zn–Al–Ni alloys, Mater. Sci. Eng. A, 433, 149, 10.1016/j.msea.2006.06.040 de Wit, 1959, Self-energy of a helical dislocation, Phys. Rev., 116, 592, 10.1103/PhysRev.116.592 Grilhé, 1966, Formes d’équilibre des dislocations hélicoïdales, J. Phys. Colloq., 27, C3183, 10.1051/jphyscol:1966323 Friedel, 1964 Weertman, 1957, Helical dislocations, Phys. Rev., 107, 1259, 10.1103/PhysRev.107.1259 Liu, 2017, Numerical investigations of helical dislocations based on coupled glide-climb model, Int. J. Plast., 92, 2, 10.1016/j.ijplas.2017.02.015 Haley, 2019, Helical dislocations: observation of vacancy defect bias of screw dislocations in neutron irradiated Fe-9Cr, SSRN Electron. J., 10.2139/ssrn.3406920 Drouet, 2016, A direct comparison between in-situ transmission electron microscopy observations and Dislocation Dynamics simulations of interaction between dislocation and irradiation induced loop in a zirconium alloy, Scr. Mater., 119, 71, 10.1016/j.scriptamat.2016.03.029 Drouet, 2014, Dislocation dynamics simulations of interactions between gliding dislocations and radiation induced prismatic loops in zirconium, J. Nucl. Mater., 449, 252, 10.1016/j.jnucmat.2013.11.049 Ghavam, 2015, Simulations of reactions between irradiation induced<a>-loops and mixed dislocation lines in zirconium, J. Nucl. Mater., 462, 126, 10.1016/j.jnucmat.2015.03.007 Onimus, 2020, Deformation mechanisms of zirconium alloys after irradiation studied by dislocation dynamics simulations and in situ straining experiments in TEM Voskoboynikov, 2005, Self-interstitial atom clusters as obstacles to glide of edge dislocations in α-zirconium, Mater. Sci. Eng. A, 400–401, 54, 10.1016/j.msea.2005.03.056 Soniak, 2002, Irradiation creep behavior of Zr-base alloys, Zircon. Nucl. Ind. Thirteen. Int. Symp., ASTM STP 1423, 837, 10.1520/STP11419S