Dislocation electron tomography: A technique to characterize the dislocation microstructure evolution in zirconium alloys under irradiation
Tài liệu tham khảo
Franklin, 1988, Implications of Zircaloy creep and growth to light water reactor performance, J. Nucl. Mater., 159, 12, 10.1016/0022-3115(88)90082-7
Holt, 2008, In-reactor deformation of cold-worked Zr–2.5Nb pressure tubes, J. Nucl. Mater., 372, 182, 10.1016/j.jnucmat.2007.02.017
Adamson, 2019, Irradiation creep and growth of zirconium alloys: a critical review, J. Nucl. Mater., 521, 167, 10.1016/j.jnucmat.2019.04.021
Onimus, 2020, Radiation effects in zirconium alloys, Compr. Nucl. Mater., 1
Onimus, 2020, Irradiation creep in materials, Compr. Nucl. Mater., 310, 10.1016/B978-0-12-803581-8.11645-5
Fidleris, 1988, The irradiation creep and growth phenomena, J. Nucl. Mater., 159, 22, 10.1016/0022-3115(88)90083-9
Franklin, 1983, ASTM STP 815
Rogerson, 1988, Irradiation growth in zirconium and its alloys, J. Nucl. Mater., 159, 43, 10.1016/0022-3115(88)90084-0
Matthews, 1988, Irradiation creep models — an overview, J. Nucl. Mater., 159, 257, 10.1016/0022-3115(88)90097-9
Gittus, 1975
Gittus, 1972, Theory of dislocation-creep due to the frenkel defects or interstitialcies produced by bombardment with energetic particles, Philos. Mag., 25, 345, 10.1080/14786437208226809
Nichols, 1987, Mechanistic modeling of Zircaloy deformation and fracture in fuel element analysis, Zircon. Nucl. Ind. Seventh Int. Symp., ASTM STP 939, 5
Nichols, 1969, Theory of the creep of zircaloy during neutron irradiation, J. Nucl. Mater., 30, 249, 10.1016/0022-3115(69)90241-4
Bullough, 1975, The stress-induced point defect-dislocation interaction and its relevance to irradiation creep, Philos. Mag., 31, 855, 10.1080/14786437508229635
Heald, 1974, Steady-state irradiation creep, Philos. Mag., 29, 1075, 10.1080/14786437408226592
Wolfer, 1976, Diffusion of vacancies and interstitials to edge dislocations, J. Appl. Phys., 47, 791, 10.1063/1.322710
Woo, 1984, Irradiation creep due to elastodiffusion, J. Nucl. Mater., 120, 55, 10.1016/0022-3115(84)90170-3
Carpenter, 1973, Vacancy precipitation in zirconium alloys, Acta Metall., 21, 1207, 10.1016/0001-6160(73)90161-2
Buckley, 1980, Dislocation loop nucleation and growth in zirconium-2.5 wt% niobium alloy during 1 MeV electron irradiation, J. Nucl. Mater., 90, 169, 10.1016/0022-3115(80)90254-8
Griffiths, 1983, Electron damage in zirconium - II, J. Nucl. Mater., 115, 313, 10.1016/0022-3115(83)90322-7
Gaumé, 2017, Microstructure evolution of recrystallized Zircaloy-4 under charged particles irradiation, J. Nucl. Mater., 495, 516, 10.1016/j.jnucmat.2017.09.004
Barnard, 2006, High-resolution three-dimensional imaging of dislocations, Science, 313, 319, 10.1126/science.1125783
Feng, 2020, TEM-based dislocation tomography: challenges and opportunities, Curr. Opin. Solid State Mater. Sci., 24, 10.1016/j.cossms.2020.100833
Liu, 2014, Electron tomography of dislocation structures, Mater. Charact., 87, 1, 10.1016/j.matchar.2013.09.016
Long, 2018, A tomographic TEM study of tension-compression asymmetry response of pyramidal dislocations in a deformed Zr-2.5 Nb alloy, Scr. Mater., 153, 94, 10.1016/j.scriptamat.2018.04.043
Feng, 2017, Electron tomography of dislocations in an Al-Cu-Mg alloy, IOP Conf. Ser. Mater. Sci. Eng., 219, 10.1088/1757-899X/219/1/012018
Onimus, 2012, In situ TEM observation of interactions between gliding dislocations and prismatic loops in Zr-ion irradiated zirconium alloys, Prog. Nucl. Energy, 57, 77, 10.1016/j.pnucene.2011.10.005
Tewari, 2020, Zirconium and its alloys: properties and characteristics, Compr. Nucl. Mater., 284, 10.1016/B978-0-12-803581-8.11735-7
Stoller, 2013, On the use of SRIM for computing radiation damage exposure, Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. At., 310, 75, 10.1016/j.nimb.2013.05.008
Ziegler, 2010, SRIM – the stopping and range of ions in matter (2010), Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. At., 268, 1818, 10.1016/j.nimb.2010.02.091
Mussi, 2017, Hardening mechanisms in olivine single crystal deformed at 1090°C: an electron tomography study, Philos. Mag., 97, 3172, 10.1080/14786435.2017.1367858
Phillips, 2011, Diffraction contrast STEM of dislocations: Imaging and simulations, Ultramicroscopy, 111, 1483, 10.1016/j.ultramic.2011.07.001
Phillips, 2011, Systematic row and zone axis STEM defect image simulations, Philos. Mag., 91, 2081, 10.1080/14786435.2010.547526
Mussi, 2014, Characterization of the glide planes of the [001] screw dislocations in olivine using electron tomography, Phys. Chem. Miner., 41, 537, 10.1007/s00269-014-0665-1
Rebled, 2011, A new approach for 3D reconstruction from bright field TEM imaging: beam precession assisted electron tomography, Ultramicroscopy, 111, 1504, 10.1016/j.ultramic.2011.06.002
Hata, 2011, High-angle triple-axis specimen holder for three-dimensional diffraction contrast imaging in transmission electron microscopy, Ultramicroscopy, 111, 1168, 10.1016/j.ultramic.2011.03.021
Herman, 1976, Convolution reconstruction techniques for divergent beams, Comput. Biol. Med., 6, 259, 10.1016/0010-4825(76)90065-2
Radon, 1983, Über die Bestimmung von Funktionen durch ihre Integralwerte längs gewisser Mannigfaltigkeiten, Comput. Tomogr., 71, 10.1090/psapm/027/692055
Messaoudi, 2007, TomoJ: tomography software for three-dimensional reconstruction in transmission electron microscopy, BMC Bioinformatics, 8, 288, 10.1186/1471-2105-8-288
Pettersen, 2004, UCSF Chimera?A visualization system for exploratory research and analysis, J. Comput. Chem., 25, 1605, 10.1002/jcc.20084
Mussi, 2016, Transmission electron microscopy of dislocations in cementite deformed at high pressure and high temperature, Philos. Mag., 96, 1773, 10.1080/14786435.2016.1177670
Kacher, 2014, In situ and tomographic analysis of dislocation/grain boundary interactions in α-titanium, Philos. Mag., 94, 814, 10.1080/14786435.2013.868942
Mussi, 2015, Characterization of dislocation interactions in olivine using electron tomography, Philos. Mag., 95, 335, 10.1080/14786435.2014.1000996
Mussi, 2015, On the deformation mechanism of olivine single crystals at lithospheric temperatures: an electron tomography study, Eur. J. Mineral., 27, 707, 10.1127/ejm/2015/0027-2481
Clouet, 2015, Dislocation locking versus easy glide in titanium and zirconium, Nat. Mater., 14, 931, 10.1038/nmat4340
Chaari, 2017, Oxygen - Dislocation interaction in zirconium from first principles, Acta Mater., 132, 416, 10.1016/j.actamat.2017.05.008
Jostsons, 1977, The nature of dislocation loops in neutron irradiated zirconium, J. Nucl. Mater., 66, 236, 10.1016/0022-3115(77)90113-1
Kelly, 1973, The characterization of dislocation loops in neutron irradiated zirconium, Philos. Mag., 28, 415, 10.1080/14786437308217463
Northwood, 1979, Characterization of neutron irradiation damage in zirconium alloys — an international ‘round-robin’ experiment, J. Nucl. Mater., 79, 379, 10.1016/0022-3115(79)90103-X
Bacon, 1965, The elastic energies of symmetrical dislocation loops, Philos. Mag., 12, 195, 10.1080/14786436508224960
Wolfer, 2004, Motion and rotation of small glissile dislocation loops in stress fields, Phys. Rev. Lett., 92, 10.1103/PhysRevLett.92.085507
Dai, 2017, The habit plane of <a>-type dislocation loops in α-zirconium: an atomistic study, Philos. Mag., 97, 944, 10.1080/14786435.2017.1287441
Serra, 2013, Atomic-level computer simulation of the interaction between 1/3<11-20>{1-100} dislocations and 1/3<11-20>interstitial loops in alpha-zirconium, Model. Simul. Mater. Sci. Eng., 21
Serrano, 2006, Helical dislocations as vacancy sinks in β phase Cu–Zn–Al–Ni alloys, Mater. Sci. Eng. A, 433, 149, 10.1016/j.msea.2006.06.040
de Wit, 1959, Self-energy of a helical dislocation, Phys. Rev., 116, 592, 10.1103/PhysRev.116.592
Grilhé, 1966, Formes d’équilibre des dislocations hélicoïdales, J. Phys. Colloq., 27, C3183, 10.1051/jphyscol:1966323
Friedel, 1964
Weertman, 1957, Helical dislocations, Phys. Rev., 107, 1259, 10.1103/PhysRev.107.1259
Liu, 2017, Numerical investigations of helical dislocations based on coupled glide-climb model, Int. J. Plast., 92, 2, 10.1016/j.ijplas.2017.02.015
Haley, 2019, Helical dislocations: observation of vacancy defect bias of screw dislocations in neutron irradiated Fe-9Cr, SSRN Electron. J., 10.2139/ssrn.3406920
Drouet, 2016, A direct comparison between in-situ transmission electron microscopy observations and Dislocation Dynamics simulations of interaction between dislocation and irradiation induced loop in a zirconium alloy, Scr. Mater., 119, 71, 10.1016/j.scriptamat.2016.03.029
Drouet, 2014, Dislocation dynamics simulations of interactions between gliding dislocations and radiation induced prismatic loops in zirconium, J. Nucl. Mater., 449, 252, 10.1016/j.jnucmat.2013.11.049
Ghavam, 2015, Simulations of reactions between irradiation induced<a>-loops and mixed dislocation lines in zirconium, J. Nucl. Mater., 462, 126, 10.1016/j.jnucmat.2015.03.007
Onimus, 2020, Deformation mechanisms of zirconium alloys after irradiation studied by dislocation dynamics simulations and in situ straining experiments in TEM
Voskoboynikov, 2005, Self-interstitial atom clusters as obstacles to glide of edge dislocations in α-zirconium, Mater. Sci. Eng. A, 400–401, 54, 10.1016/j.msea.2005.03.056
Soniak, 2002, Irradiation creep behavior of Zr-base alloys, Zircon. Nucl. Ind. Thirteen. Int. Symp., ASTM STP 1423, 837, 10.1520/STP11419S
