Disjunctive normal random forests
Tài liệu tham khảo
Breiman, 2001, Random forests, Mach. Learn., 45, 5, 10.1023/A:1010933404324
F. Schroff, A. Criminisi, A. Zisserman, Object class segmentation using random forests, in: British Machine Vision Conference, 2008.
A. Bosch, A. Zisserman, X. Muoz, Image classification using random forests and ferns, in: IEEE Eleventh International Conference on Computer Vision 2007, ICCV 2007, pp. 1–8.
P. Kontschieder, S.R. Bulò, A. Criminisi, P. Kohli, M. Pelillo, H. Bischof, Context-sensitive decision forests for object detection, in: Advances in Neural Information Processing Systems vol. 25, 2012, pp. 440–448.
Criminisi, 2011
D. Laptev, A. Vezhnevets, S. Dwivedi, J. Buhmann, Anisotropic sstem image segmentation using dense correspondence across sections, in: Medical Image Computing and Computer-Assisted Intervention MICCAI 2012, 2012, pp. 323–330.
Cortes, 1995, Support-vector networks, Mach. Learn., 20, 273, 10.1007/BF00994018
Kearns, 1994, Cryptographic limitations on learning boolean formulae and finite automata, J. ACM, 41, 67, 10.1145/174644.174647
Haykin, 1999
S.E. Fahlman, C. Lebiere, The cascade-correlation learning architecture, in: Advances in Neural Information Processing Systems, Volume 2, pp. 524–532.
Ou, 2007, Multi-class pattern classification using neural networks, Pattern Recognit., 40, 4, 10.1016/j.patcog.2006.04.041
Hsu, 2002, A comparison of methods for multiclass support vector machines, IEEE Trans. Neural Netw., 13, 415, 10.1109/72.991427
Torralba, 2007, Sharing visual features for multiclass and multiview object detection, IEEE Trans. Pattern Anal. Mach. Intell., 29, 854, 10.1109/TPAMI.2007.1055
Criminisi, 2011, Decision forests, Found. Trends Comput. Graph. Vis., 7, 81, 10.1561/0600000035
R. Caruana, N. Karampatziakis, A. Yessenalina, An empirical evaluation of supervised learning in high dimensions, in: Proceedings of the Twenty-fifth International Conference on Machine Learning, ACM, 2008, pp. 96–103.
Menze, 2011
Rodriguez, 2006, Rotation forest, IEEE Trans. Pattern Anal. Mach. Intell., 28, 1619, 10.1109/TPAMI.2006.211
Bernard, 2008
Tripoliti, 2013, Modifications of the construction and voting mechanisms of the random forests algorithm, Data Knowl. Eng., 87, 41, 10.1016/j.datak.2013.07.002
Hazewinkel, 2001
Cios, 1992, A machine learning method for generation of a neural network architecture, IEEE Trans. Neural Netw., 3, 280, 10.1109/72.125869
Ivanova, 1995, Initialization of neural networks by means of decision trees, Knowl. Based Syst., 8, 333, 10.1016/0950-7051(96)81917-4
Banerjee, 1997, Initializing neural networks using decision trees, Computational learning theory and natural learning systems, 4, 3
Setiono, 1999, On mapping decision trees and neural networks, Knowl. Based Syst., 12, 95, 10.1016/S0950-7051(99)00009-X
Olaru, 2003, A complete fuzzy decision tree technique, Fuzzy Sets Syst., 138, 221, 10.1016/S0165-0114(03)00089-7
O. Irsoy, O.T. Yildiz, E. Alpaydin, Soft decision trees, in: IEEE Twenty-first International Conference on Pattern Recognition (ICPR), 2012, pp. 1819–1822.
J. Wang, V. Saligrama, Local supervised learning through space partitioning, in: NIPS, 2012, pp. 91–99.
M.J. Saberian, N. Vasconcelos, Multiclass boosting: theory and algorithms, in: Advances in Neural Information Processing Systems, 2011, pp. 2124–2132.
G. Ratsch, T. Onoda, K.-R. Muller, Soft margins for adaboost, in: Machine Learning, 2000, pp. 287–320.
Ye, 2013, Stratified sampling for feature subspace selection in random forests for high dimensional data, Pattern Recognit., 46, 769, 10.1016/j.patcog.2012.09.005
Wu, 2012, Snp selection and classification of genome-wide snp data using stratified sampling random forests, IEEE Trans. NanoBiosci., 11, 216, 10.1109/TNB.2012.2214232
Amaratunga, 2008, Enriched random forests, Bioinformatics, 24, 2010, 10.1093/bioinformatics/btn356
A. Frank, A. Asuncion, UCI machine learning repository, 〈http://archive.ics.uci.edu/ml〉 (2010).
Chang, 2011, LIBSVM, ACM Trans. Intell. Syst. Technol., 2, 10.1145/1961189.1961199
R. Sznitman, C.J. Becker, F. Fleuret, P. Fua, Fast object detection with entropy-driven evaluation, in: Computer Vision and Pattern Recognition (CVPR), 2013.
Hastie, 2001, 10.1007/978-0-387-21606-5