Disjointness in supercyclicity on the algebra of Hilbert-Schmidt operators

Indian Journal of Pure and Applied Mathematics - Tập 46 - Trang 219-228 - 2015
Liang Zhang1, Ze-Hua Zhou2
1School of Marine Science and Technology, Tianjin University, Tianjin, P. R. China
2Department of Mathematics, Tianjin University, Tianjin, P.R. China

Tóm tắt

In this paper we show that the property of disjoint supercyclic operators T 1, ⋯, T N satisfying d-supercyclicity criterion on the same Hilbert space is equivalent to disjointness in supercyclicity of the corresponding left multiplication operators induced by T1, ⋯, T N in the strong operator topology. Besides, by the similar discussion, we also obtain that d-hypercyclicity criterion for any T1, ⋯, TN on the same Hilbert space is equivalent to d-hypercyclicity of the corresponding left multiplication operators induced by T1, ⋯, TN in the ‖.‖2 topology.

Tài liệu tham khảo

T. Bermüdez, A. Bonilla and A. Peris, On hypercyclicity and supercyclicity criteria, Bull. Aust. Math. Soc., 70 (2004), 45–54. L. Bernal-Gonzâlez, Disjoint hypercyclic operators, Studia Math., 182 (2007), 113–131. L. Bernai and K. G. Grosse-Erdmann, The hypercyclicity criterion for sequences of operators, Studia Math., 157 (2003), 17–32. F. Bayart and E. Matheron, Dynamics of Linear Operators, Cambridge University Press, Cambridge, 2009. J. Bonet, F. Martnez-Gimnez and A. Peris, Universal and chaotic multipliers on spaces of operators, J. Math. Anal. Appl., 297 (2004), 599–611. J. Bès, Ö. Martin and A. Peris, Disjoint hypercyclic linear fractional composition operators, J. Math. Anal. Appl., 381 (2011), 843–856. J. Bès, Ö. Martin, A. Peris and S. Shkarin, Disjoint mixing operators, J. Funct. Anal., 263 (2012), 1283–1322. J. Bès and A. Peris, Hereditarily hypercyclic operators, J. Funct. Anal., 167 (1999), 94–112. J. Bès and A. Peris, Disjointness in hypercyclicity, J. Math. Anal. Appl., 336 (2007), 297–315. N. Feldman, Hypercyclicity and Supercyclicity for invertible bilateral weighted shifts, Proc. Amer. Math. Soc., 131(2)(2003), 479–485. K. G. Grosse-Erdmann and A. Peris Manguillot, Linear Chaos, Universitext. Springer, London, 2011. H. M. Hilden and L. J. Wallen, Some cyclic and non-cyclic vectors of certain operators, Ind. Univ. Math. J., 23 (1974), 557–565. F. Martmez-Giménez and A. Peris, Universality and chaos for tensor products of operators, J. Approx. Theory, 124 (2003), 7–24. H. N. Salas, Hypercyclic weighted shifts, Trans. Amer. Math. Soc., 347 (1995), 993–1004. H. N. Salas, Supercyclicity and weighted shifts, Studia Math., 135(1)(1999), 55–74. B. Yousefi and H. Rezaei, Hypercyclicity on the algebra of Hilbert-Schmidt operators, Result. Math., 46 (2004), 174–180. B. Yousefi and H. Rezaei, Supercyclicity in the operator algebra using Hilbert-Schmidt operators, Rendiconti del Circolo Matematico di Palermo. Serie H., Tomo LVI (2007), 33–42.