Disentangling the relationship between Bitcoin and market attention measures

Economia e Politica Industriale - Tập 47 - Trang 71-91 - 2019
Gianna Figà-Talamanca1, Marco Patacca2
1Department of Economics, University of Perugia, Perugia, Italy
2Léonard de Vinci Pôle Universitaire, Research Center, Paris La Défense Cedex, France

Tóm tắt

In the last few years Bitcoin price dynamics has been the subject of intense research. One of the main stream of investigation is the identification of relevant factors affecting its returns and volatility; empirical evidence suggests a positive association between returns and sentiment proxies about the Bitcoin network, such as Wikipedia inquiries, internet search intensity on the topic, trading volume in main exchanges or sentiment measures obtained via natural language processing algorithms applied on specialized forums comments or social media posts on the theme. In this paper we investigate the association of trading volume and internet search intensity with Bitcoin returns and volatility, complementing the outcomes in Figá-Talamanca and Patacca (Decis Econ Fin ISSN: 1129-6569, https://doi.org/10.1007/s10203-019-00258-7, 2019) and Urquhart (Econ Lett 166:40–44, ISSN: 0165-1765, https://doi.org/10.1016/j.econlet.2018.02.017, 2018): we find no direct relationship between the two market attention measures and returns while both the trading volume and the internet search intensity affect positively Bitcoin volatility. Conversely, an increase in Bitcoin returns does increase both trading volume and internet search intensity, evidencing an inverse relationship between returns and attention measures. As a byproduct, we also detect a positive association between trading volume and the internet search intensity and no reverse relationship. Since market attention, especially internet search volume, do increase around relevant events and corresponding news or announcements for the Bitcoin market, we also analyze whether and to which extent the above relationships change, after specific events are taken into account. Indeed, by applying two different approaches, we show that the relationships may change significantly.

Tài liệu tham khảo

Ahn, Y., & Kim, D. (2019). Sentiment disagreement and Bitcoin price fluctuations: A psycholinguistic approach. Applied Economics Letters. https://doi.org/10.1080/13504851.2019.1619013. (ISSN 1466-4291). Almudhaf, F. (2018). Pricing efficiency of Bitcoin trusts. Applied Economics Letters, 25(7), 504–508. Baek, C., & Elbeck, M. (2015). Bitcoins as an investment or speculative vehicle? A first look. Applied Economics Letters, 22(1), 30–34. Bai, J., & Perron, P. (1998). Estimating and testing linear models with multiple structural changes. Econometrica, 66, 47–78. Bai, J., & Perron, P. (2003). Computation and analysis of multiple structural change models. Journal of applied econometrics, 18(1), 1–22. Barber, B. M., & Odean, T. (2007). All that glitters: The effect of attention and news on the buying behavior of individual and institutional investors. The Review of Financial Studies, 21(2), 785–818. Bellini, F., & Figà-Talamanca, G. (2007). Conditional tail behaviour and value at risk. Quantitative Finance, 7(6), 599–607. Bistarelli, S., Cretarola, A., Figà-Talamanca, G., Mercanti, I., & Patacca, M. (2018). Is arbitrage possible in the Bitcoin market? (work-in-progress paper). In M. Coppola, E. Carlini, D. D’Agostino, J. Altmann, & J. Á. Bañares (Eds.), Economics of grids, clouds, systems, and services (pp. 243–251). Cham: Springer. Bistarelli, S., Cretarola, A., Figà-Talamanca, G., & Patacca, M. (2019). Model-based arbitrage in multi-exchange models for Bitcoin price dynamics. Digital Finance. https://doi.org/10.1007/s42521-019-00001-2. (ISSN 2524-6186). Blau, B. M. (2017). Price dynamics and speculative trading in Bitcoin. Research in International Business and Finance, 41(Supplement C), 493–499. https://doi.org/10.1016/j.ribaf.2017.05.010. (ISSN 0275-5319). Bukovina, J., & Martiček, M. (2016). Sentiment and Bitcoin volatility. Technical report, Mendel University in Brno, Faculty of Business and Economics. Chronopoulos, D. K., Papadimitriou, F. I., & Vlastakis, N. (2018). Information demand and stock return predictability. Journal of International Money and Finance, 80, 59–74. https://doi.org/10.1016/j.jimonfin.2017.10.001. (ISSN 0261-5606). Ciaian, P., Rajcaniova, M., & Kancs, A. (2016). The economics of Bitcoin price formation. Applied Economics, 48(19), 1799–1815. Cretarola, A., & Figà-Talamanca, G. (2019). Detecting bubbles in Bitcoin price dynamics via market exuberance. Annals of Operations Research. https://doi.org/10.1007/s10479-019-03321-z. (ISSN 1572-9338). Cretarola, A., Figà-Talamanca, G., & Patacca, M. (2018). A continuous time model for Bitcoin price dynamics. In M. Corazza, M. Durbán, A. Grané, C. Perna, & M. Sibillo (Eds.), Mathematical and statistical methods for actuarial sciences and finance: MAF 2018 (pp. 273–277). Cham: Springer. Cretarola, A., Figà-Talamanca, G., & Patacca, M. (2019). Market attention and Bitcoin price modeling: Theory, estimation and option pricing. Decisions in Economics and Finance. https://doi.org/10.1007/s10203-019-00262-x. (ISSN 1129-6569). Da, Z., Engelberg, J., & Gao, P. (2011). In search of attention. The Journal of Finance, 66(5), 1461–1499. Dimpfl, T., & Jank, S. (2016). Can internet search queries help to predict stock market volatility? European Financial Management, 22(2), 171–192. Ding, Z., & Engle, R.F. (2001). Large scale conditional covariance matrix modeling, estimation and testing. NYU working paper No. Fin-01-029, 2001. Available at SSRN 1294569. Dyhrberg, A. H. (2016). Bitcoin, gold and the dollar—a garch volatility analysis. Finance Research Letters, 16(Supplement C), 85–92. https://doi.org/10.1016/j.frl.2015.10.008. (ISSN 1544-6123). Figá-Talamanca, G., & Patacca, M. (2019). Does market attention affect Bitcoin returns and volatility? Decisions in Economics and Finance. https://doi.org/10.1007/s10203-019-00258-7. (ISSN 1129-6569). Gervais, S., Kaniel, R., & Mingelgrin, D. H. (2001). The high-volume return premium. The Journal of Finance, 56(3), 877–919. Gregoriou, A. (2019). Cryptocurrencies and asset pricing. Applied Economics Letters, 26(12), 995–998. Hou, K., Xiong, W., & Peng, L. (2009). A tale of two anomalies: The implications of investor attention for price and earnings momentum. Unpublished paper, available at SSRN 976394. Jeantheau, T. (1998). Strong consistency of estimators for multivariate arch models. Econometric Theory, 14(1), 70–86. Katsiampa, P. (2017). Volatility estimation for Bitcoin: A comparison of garch models. Economics Letters, 158(Supplement C), 3–6. https://doi.org/10.1016/j.econlet.2017.06.023. (SSN 0165-1765). Kleiber, C., Hornik, K., Leisch, F., & Zeileis, A. (2002). Strucchange: An r package for testing for structural change in linear regression models. Journal of Statistical Software, 7(2), 1–38. Kristoufek, L. (2013). BitCoin meets Google Trends and Wikipedia: Quantifying the relationship between phenomena of the Internet era. Scientific Reports, 3, 3415. Kristoufek, L. (2015). What are the main drivers of the Bitcoin price? Evidence from wavelet coherence analysis. PLoS One, 10(4), e0123923. Mbanga, C. L. (2019). The day-of-the-week pattern of price clustering in Bitcoin. Applied Economics Letters, 26(10), 807–811. Nadarajah, S., & Chu, J. (2017). On the inefficiency of Bitcoin. Economics Letters, 150(Supplement C), 6–9. https://doi.org/10.1016/j.econlet.2016.10.033. (ISSN 0165-1765). Smith, G. P. (2012). Google internet search activity and volatility prediction in the market for foreign currency. Finance Research Letters, 9(2), 103–110. Urquhart, A. (2016). The inefficiency of Bitcoin. Economics Letters, 148(Supplement C), 80–82. https://doi.org/10.1016/j.econlet.2016.09.019. (ISSN 0165-1765). Urquhart, A. (2018). What causes the attention of Bitcoin? Economics Letters, 166, 40–44. https://doi.org/10.1016/j.econlet.2018.02.017. (ISSN 0165-1765). Yermack, D. (2015). Is Bitcoin a real currency? An economic appraisal. In D. L. K. Chuen (Ed.), Handbook of digital currency (pp. 31–43). Elsevier.