Disentangling the city traffic rhythms: A longitudinal analysis of MFD patterns over a year
Tài liệu tham khảo
Ambühl, 2018, Introducing a re-sampling methodology for the estimation of empirical macroscopic fundamental diagrams, Transp. Res. Rec., 2672, 239, 10.1177/0361198118788181
Ambühl, 2020, A functional form with a physical meaning for the macroscopic fundamental diagram, Transp. Res. B, 137, 119, 10.1016/j.trb.2018.10.013
Ambühl, L., Loder, A., Menendez, M., Axhausen, K., 2016. Empirical macroscopic fundamental diagrams: New insights from loop detector and floating car data. Paper presented at the 96th Annual Meeting of the Transportation Research Board, Washington, DC, USA.
Ambühl, 2018, A case study of zurich’s two-layered perimeter control
Ambühl, 2019, Approximative network partitioning for MFDs from stationary sensor data, Transp. Res. Rec., 2673, 94, 10.1177/0361198119843264
Ampountolas, K., Kouvelas, A., 2015. Real-time estimation of critical values of the macroscopic fundamental diagram for maximum network throughput. Paper presented at the 94th Annual Meeting of the Transportation Research Board, Washington, DC, USA.
Bagnall, 2017, The great time series classification bake off: a review and experimental evaluation of recent algorithmic advances, Data Min. Knowl. Discov., 31, 606, 10.1007/s10618-016-0483-9
Bahlmann, 2004, The writer independent online handwriting recognition system frog on hand and cluster generative statistical dynamic time warping, IEEE Trans. Pattern Anal. Mach. Intell., 26, 299, 10.1109/TPAMI.2004.1262308
Berndt, 1994, Using dynamic time warping to find patterns in time series, 359
Buisson, 2009, Exploring the impact of homogeneity of traffic measurements on the existence of macroscopic fundamental diagrams, Transp. Res. Rec., 2124, 127, 10.3141/2124-12
Çolak, 2016, Understanding congested travel in urban areas, Nature Commun., 7, 10793, 10.1038/ncomms10793
Daganzo, 2007, Urban gridlock: Macroscopic modeling and mitigation approaches, Transp. Res. B, 41, 49, 10.1016/j.trb.2006.03.001
Daganzo, 2008, An analytical approximation for the macroscopic fundamental diagram of urban traffic, Transp. Res. B, 42, 771, 10.1016/j.trb.2008.06.008
de Livera, 2011, Forecasting time series with complex seasonal patterns using exponential smoothing, J. Amer. Statist. Assoc., 106, 1513, 10.1198/jasa.2011.tm09771
Filzmoser, 2008, Outlier identification in high dimensions, Comput. Stat. Data Anal., 52, 1694, 10.1016/j.csda.2007.05.018
Gayah, 2011, Clockwise hysteresis loops in the macroscopic fundamental diagram: An effect of network instability, Transp. Res. B, 45, 643, 10.1016/j.trb.2010.11.006
Geroliminis, N., Daganzo, C.F., 2007. Macroscopic modeling of traffic in cities. Paper presented at the 86th Annual Meeting of the Transportation Research Board, Washington, DC, USA.
Geroliminis, 2008, Existence of urban-scale macroscopic fundamental diagrams: Some experimental findings, Transp. Res. B, 42, 759, 10.1016/j.trb.2008.02.002
Geroliminis, 2009, Cordon pricing consistent with the physics of overcrowding, 219
Geroliminis, 2011, Properties of a well-defined macroscopic fundamental diagram for urban traffic, Transp. Res. B, 45, 605, 10.1016/j.trb.2010.11.004
Geroliminis, 2014, A three-dimensional macroscopic fundamental diagram for mixed bi-modal urban networks, Transp. Res. C, 42, 168, 10.1016/j.trc.2014.03.004
González, 2008, Understanding individual human mobility patterns, Nature, 453, 779, 10.1038/nature06958
Haddad, 2012, On the stability of traffic perimeter control in two-region urban cities, Transp. Res. B, 46, 1159, 10.1016/j.trb.2012.04.004
Hastie, 2009, vol. 27
He, 2019, Providing public transport priority in the perimeter of urban networks: A bimodal strategy, Transp. Res. C, 107, 171, 10.1016/j.trc.2019.08.004
Jain, 1999, Data clustering: A review, ACM Comput. Surv., 31, 10.1145/331499.331504
Ji, 2012, On the spatial partitioning of urban transportation networks, Transp. Res. B, 46, 1639, 10.1016/j.trb.2012.08.005
Ji, 2014, Empirical observations of congestion propagation and dynamic partitioning with probe data for large-scale systems, Transp. Res. Rec., 2422, 1, 10.3141/2422-01
Kaufman, 2009
Keyvan-Ekbatani, 2016, Examining perimeter gating control of urban traffic networks with locally adaptive traffic signals, 579
Knoop, 2014, The influence of the road layout on the network fundamental diagram, Transp. Res. Rec., 2421, 22, 10.3141/2421-03
Knoop, 2015, Traffic dynamics: Its impact on the macroscopic fundamental diagram, Physica A, 438, 236, 10.1016/j.physa.2015.06.016
Kowarik, 2016, Imputation with the R package VIM, J. Stat. Softw., 74, 1
Laval, 2015, Stochastic approximations for the macroscopic fundamental diagram of urban networks, Transp. Res. B, 81, 904, 10.1016/j.trb.2015.09.002
Leclercq, 2015, Macroscopic traffic dynamics with heterogeneous route patterns, Transp. Res. C, 7, 631
Loder, 2019, Understanding traffic capacity of urban networks, Sci. Rep., 9, 16283, 10.1038/s41598-019-51539-5
Lopez, 2017, Revealing the day-to-day regularity of urban congestion patterns with 3D speed maps, Sci. Rep., 7, 14029, 10.1038/s41598-017-14237-8
Louail, 2015, Uncovering the spatial structure of mobility networks, Nature Commun., 6, 10.1038/ncomms7007
Mahmassani, 2013, Urban network gridlock: Theory, characteristics, and dynamics, Transp. Res. C, 36, 480, 10.1016/j.trc.2013.07.002
Mahmassani, 1987, Performance of urban traffic networks, 1
Mantel, 1967, The detection of disease clustering and a generalized regression approach., Cancer research, 27, 209
Mariotte, 2017, Macroscopic urban dynamics: Analytical and numerical comparisons of existing models, Transp. Res. B, 101, 245, 10.1016/j.trb.2017.04.002
Mazloumian, 2011, The spatial variability of vehicle densities as determinant of urban network capacity, Phil. Trans. R. Soc. A, 368, 4627, 10.1098/rsta.2010.0099
Muhlich, 2015, An examination of MFD hysteresis patterns for hierarchical urban street networks using micro-simulation, Transp. Res. Rec., 2491, 117, 10.3141/2491-13
Necula, 2015, Analyzing traffic patterns on street segments based on GPS data using R, Transp. Res. Proc., 10, 276
Ortigosa, 2014, Study on the number and location of measurement points for an MFD perimeter control scheme: a case study of Zurich, EURO J. Transp. Logist., 3, 245
Paipuri, 2019, Validation of MFD-based models with microscopic simulations on real networks: Importance of production hysteresis and trip lengths estimation, Transp. Res. Rec., 2673, 478, 10.1177/0361198119839340
Przybyla, 2015, Estimating risk effects of driving distraction: A dynamic errorable car-following model, Transp. Res. C, 50, 117, 10.1016/j.trc.2014.07.013
Ramezani, 2015, Dynamics of heterogeneity in urban networks: Aggregated traffic modeling and hierarchical control, Transp. Res. B, 74, 1, 10.1016/j.trb.2014.12.010
Saeedmanesh, M., Geroliminis, N., 2014. Observing MFDs for heterogeneous traffic networks with stop-line loop detector data. In: 16th Swiss Transport Research Conference, Ascona.
Saeedmanesh, 2016, Clustering of heterogeneous networks with directional flows based on ”Snake” similarities, Transp. Res. B, 91, 250, 10.1016/j.trb.2016.05.008
Saeedmanesh, 2017, Dynamic clustering and propagation of congestion in heterogeneously congested urban traffic networks, Transp. Res. B, 105, 193, 10.1016/j.trb.2017.08.021
Saffari, 2020, A methodology for identifying critical links and estimating macroscopic fundamental diagram in large-scale urban networks, Transp. Res. C, 119, 10.1016/j.trc.2020.102743
Sardá-Espinosa, 2019, Time-series clustering in R Using the dtwclust package, R J., 11, 10.32614/RJ-2019-023
Sharma, 2018, A pattern recognition algorithm for assessing trajectory completeness, Transp. Res. C, 96, 432, 10.1016/j.trc.2018.09.027
Sun, 2018, A dynamic time warping algorithm based analysis of pedestrian shockwaves at bottleneck, J. Adv. Transp., 2018, 10.1155/2018/1269439
Taylor, 2015, Method for investigating intradriver heterogeneity using vehicle trajectory data: A dynamic time warping approach, Transp. Res. B, 73, 59, 10.1016/j.trb.2014.12.009
Thorndike, 1953, Who belongs in the family?, Psychometrika, 18, 267, 10.1007/BF02289263
Tilg, 2020, Evaluation of analytical approximation methods for the macroscopic fundamental diagram, Transp. Res. C, 114, 1, 10.1016/j.trc.2020.02.003
Tormene, 2009, Matching incomplete time series with dynamic time warping: an algorithm and an application to post-stroke rehabilitation, Artif. Intell. Med., 45, 11, 10.1016/j.artmed.2008.11.007
Van Schaik, 2003, Orangutan cultures and the evolution of material culture, Science, 299, 102, 10.1126/science.1078004
Vickrey, 2020, Congestion in midtown manhattan in relation to marginal cost pricing, Economics of Transportation, 21, 10.1016/j.ecotra.2019.100152
Waddle, 1994, Matrix correlation tests support a single origin for modern humans, Nature, 368, 452, 10.1038/368452a0
Ward, 1963, Hierarchical grouping to optimize an objective function, J. Amer. Statist. Assoc., 58, 236, 10.1080/01621459.1963.10500845
Yang, 2019, Heterogeneity aware urban traffic control in a connected vehicle environment: A joint framework for congestion pricing and perimeter control, Transp. Res. C, 105, 439, 10.1016/j.trc.2019.06.007
Yang, 2018, Multi-scale perimeter control approach in a connected-vehicle environment, Transp. Res. C, 94, 32, 10.1016/j.trc.2017.08.014
Yuan, 2012, Extracting dynamic urban mobility patterns from mobile phone data, 354
Zheng, 2016, Modeling and optimization of multimodal urban networks with limited parking and dynamic pricing, Transp. Res. B, 83, 36, 10.1016/j.trb.2015.10.008
Zheng, 2012, A dynamic cordon pricing scheme combining the macroscopic fundamental diagram and an agent-based traffic model, Transp. Res. A, 46, 1291