Disease-Suppressive Soils—Beyond Food Production: a Critical Review

Journal of Soil Science and Plant Nutrition - Tập 21 Số 2 - Trang 1437-1465 - 2021
Somasundaram Jayaraman1, Anandkumar Naorem2, Rattan Lal3, Ram C. Dalal4, Nishant K. Sinha1, A. K. Patra1, S. K. Chaudhari5
1ICAR–Indian Institute of Soil Science, Nabibagh, Berasia Road, Bhopal, Madhya Pradesh, 462038, India
2ICAR– Central Arid Zone Research Institute, Regional Research Station-Kukma, Bhuj, Gujarat, 370105, India
3Carbon Management Sequestration Center, The Ohio State University, 2021 Coffey Rd, Columbus, OH, USA
4School of Agriculture and Food Sciences, The University of Queensland, St Lucia, QLD, 4072, Australia
5Indian Council of Agricultural Research, KAB-II, New Delhi, India

Tóm tắt

Từ khóa


Tài liệu tham khảo

Abdallah RZ, Wegner CE, Liesack W (2019) Community transcriptomics reveals drainage effects on paddy soil microbiome across all three domains of life. Soil Biol Biochem 132:131–142. https://doi.org/10.1016/j.soilbio.2019.01.023

Abdel-Monaim MF, Abo-Elyousr KA (2012) Effect of preceding and intercropping crops on suppression of lentil damping-off and root rot disease in New Valley, Egypt. Crop Protection 32:41–46. https://doi.org/10.1016/j.cropro.2011.10.011

Adam M, Westphal A, Hallmann J, Heuer H (2014) Specific microbial attachment to root knot nematodes in suppressive soil. Applied and Environ Microbiol 80(9):2679–2686. https://doi.org/10.1128/AEM.03905-13

Adesina MF, Lembke A, Costa R, Speksnijder A, Smalla K (2007) Screening of bacterial isolates from various European soils for in vitro antagonistic activity towards Rhizoctonia solani and Fusarium oxysporum:site- dependent composition and diversity revealed. Soil Biol Biochem 39:2818–2828. https://doi.org/10.1016/j.soilbio.2007.06.004

Ainsworth EA, Long SP (2005) What have we learned from 15 years of free-air CO2 enrichment (FACE)? A meta-analytic review of the responses of photosynthesis, canopy properties and plant production to rising CO2. New Phytologist 165:351–372. https://doi.org/10.1111/j.1469-8137.2004.01224.x

Akhtar M, Alam MM (1993) Utilization of waste materials in nematode control: a review. Bioresour Technol 45:1–7. https://doi.org/10.1016/0960-8524(93)90134-w

Alabouvette C (1986) Fusarium wilt suppressive soils from the Chateaurenard region: review of a 10-year study. Agronomie 6:273–284. https://doi.org/10.1051/agro:19860307

Alabouvette C, Lemanceau P, Steinberg C (1993) Recent advances in the biological control of Fusarium wilts. Pestic Sci 37:365–373

Alabouvette C, Steinberg C (2006) The soil as a reservoir for antagonists to plant diseases. In: Eilenberg J, Hokkanen HMT (eds) An Ecological and Societal Approach to Biological Control. Springer, Dordrecht, pp 123–144. https://doi.org/10.1007/1-4020-4401-1_8

Alfano G, Lustrato G, Lima G, Vitullo D, Ranalli G (2011) Characterization of composted olive mill wastes to predict potential plant disease suppressiveness. Biological Control 58:199–207. https://doi.org/10.1016/j.biocontrol.2011.05.001

Allison SD, Martiny JBH (2008) Resistance, resilience, and redundancy in microbial communities. Proc Natl Acad Sci USA 105:11512–11519. https://doi.org/10.1073/pnas.0801925105

Amir H, Alabouvette C (1993) Involvement of soil abiotic factors in the mechanisms of soil suppressiveness to Fusarium wilts. Soil Biol Biochem 25:157–164. https://doi.org/10.1016/0038-0717(93)90022-4

Andrade OA, Mathre DE, Sands DC (1994) Suppression of Gaeumannomyces graminis var. tritici in Montana soils and its transferability between soils. Soil Biol Biochem 26:397–402. https://doi.org/10.1016/0038-0717(94)90289-5

Andrivon D (1994) Dynamics of the survival and infectivity to potato tubers of sporangia of Phytophthora infestans in three different soils. Soil Biol Biochem 26:945–952. https://doi.org/10.1016/0038-0717(94)90107-4

Anton T (2017) Planet of Microbes: The Perils and Potential of Earth's Essential Life Forms. University of Chicago Press. https://doi.org/10.7208/chicago/9780226354132.001.0001

Bailey KL, Lazarovits G (2003) Suppressing soil-borne diseases with residue management and organic amendments. Soil Till Res 72:169–180. https://doi.org/10.1016/s0167-1987(03)00086-2

Bailly A, Weisskopf L (2012) The modulating effect of bacterial volatiles on plant growth: current knowledge and future challenges. Plant Signal Behav 7:79–85. https://doi.org/10.4161/psb.7.1.18418

Baker KF, Snyder WC (1965) Ecology of Soil-Borne Plant Pathogens: Prelude to Biological Control. University of California Press, California. https://doi.org/10.2307/3756904

Bally R, Elmerich C (2005) Biocontrol of plant diseases by associative and endophytic nitrogen-fixing bacteria. In: Elmerich C, Newton WE (eds) Associative and Endophytic Nitrogen-fixing Bacteria and Cyanobacterial Associations. Kluwer Academic Publishers, Dordrecht, pp 171–190

Barea JM, Tobar RM, Azcon-Aguilar C (1996) Effect of a genetically-modified Rhizobium meliloti inoculant on the development of arbuscular mycorrhizas, root morphology, nutrient uptake and biomass accumulation in Medicago sativa L. New Phytol 134:361–369. https://doi.org/10.1111/j.1469-8137.1996.tb04641.x

Barnett SJ, Roget DK, Ryder MH (2006) Suppression of Rhizoctonia solani AG-8 induced disease on wheat by the interaction between Pantoea, Exiguobacterium, and Microbacteria. Aust J Soil Res 44:331–342. https://doi.org/10.1071/sr05113

Beier S, Bertilsson S (2013) Bacterial chitin degradation—mechanisms and ecophysiological strategies. Front Microbiol 4:149. https://doi.org/10.3389/fmicb.2013.00149

Benizri E, Piutti S, Verger S, Pages L, Vercambre G, Poessel J, Michelot P (2005) Replant diseases: bacterial community structure and diversity in peach rhizosphere as determined by metabolic and genetic fingerprinting. Soil Biology and Biochemistry 37:1738–1746. https://doi.org/10.1016/j.soilbio.2005.02.009

Bennett AJ, Bending GD, Chandler D, Hilton S, Mills P (2012) Meeting the demand for crop production: the challenge of yield decline in crops grown in short rotations. Biol Rev 87:52–71. https://doi.org/10.1111/j.1469-185x.2011.00184.x

Berendsen RL, Pieterse CM, Bakker PA (2012) The rhizosphere microbiome and plant health. Trends Plant Sci. 17:478–486. https://doi.org/10.1016/j.tplants.2012.04.001

Blok WJ, Lamers JG, Termorshuizen AJ, Bollen GJ (2000) Control of soilborne plant pathogens by incorporating fresh organic amendments followed by tarping. Phytopathology 90:253–259. https://doi.org/10.1094/phyto.2000.90.3.253

Bonanomi G, Antignani C, Pane C, Scala F (2007) Suppression of soil borne fungal diseases with organic amendments. J Plant Pathol 89(3):311–324

Bonanomi G, Antignani V, Capodilupo M, Scala F (2010) Identifying the characteristics of organic soil amendments that suppress soilborne plant diseases. Soil Biol Biochem 42:136–144. https://doi.org/10.1016/j.soilbio.2009.10.012

Bonanomi G, Cesarano G, Antignani V, Di Maio C, De Filippis F, Scala F (2018a) Conventional farming impairs Rhizoctonia solani disease suppression by disrupting soil food web. J Phytopath. 166(9):663–673. https://doi.org/10.1111/jph.12729

Bonanomi G, Lorito M, Vinale F, Woo SL (2018b) Organic amendments, beneficial microbes, and soil microbiota: toward a unified framework for disease suppression. Annual Review of Phytopath 56:1–20. https://doi.org/10.1146/annurev-phyto-080615-100046

Boukaew S, Plubrukam A, Prasertsan P (2013) Effect of volatile substances from Streptomyces philanthi RM-1-138 on growth of Rhizoctonia solani on rice leaf. Bio Control 58:471–482. https://doi.org/10.1007/s10526-013-9510-6

Brader G, Compant S, Mitter B, Trognitz F, Sessitsch A (2014) Metabolic potential of endophytic bacteria. Curr Opin Biotechnol 27:30–37. https://doi.org/10.1016/j.copbio.2013.09.012

Brady NC (1984) The nature and properties of soils. Macmillan Publishing Co., Inc., Englewood Cliffs

Brevik EC (2009) Soil, food security, and human health. In: Soils, Plant Growth and Crop Production. In: Verheye W (ed) Encyclopedia of Life Support Systems (EOLSS), Developed under the Auspices of the UNESCO. EOLSS Publishers, Oxford

Brevik EC, Burgess LC (2013) Soils and Human Health. CRC Press, Boca Raton, FL

Butler DM, Kokalis-Burelle N, Albano JP, McCollum TG, Muramoto J, Shennan C, Rosskopf EN (2014) Anaerobic soil disinfestation (ASD) combined with soil solarization as a methyl bromide alternative: vegetable crop performance and soil nutrient dynamics. Plant Soil 378:365–381. https://doi.org/10.1007/s11104-014-2030-z

Butterworth MH, Semenov M, Barnes AP, Moran D, West JS, Fitt BDL (2010) North-south divide; contrasting impacts of climate change on crop yields in Scotland and England. J Royal Soc Interface 7:123–130. https://doi.org/10.1098/rsif.2009.0111

Campos SB, Lisboa BB, Camargo FAO, Bayer C, Sczyrba A, Dirksen P, Albersmeier A, Kalinowski J, Beneduzi A, Costa PB, Passaglia LMP, Vargas LK, Wendisch VF (2016) Soil suppressiveness and its relations with the microbial community in a Brazilian subtropical agroecosystem under different management systems. Soil Biol Biochem 96:191–197. https://doi.org/10.1016/j.soilbio.2016.02.010

Cao Y, Wang J, Wu H, Yan S, Guo D, Wang G, Ma Y (2016) Soil chemical and microbial responses to biogas slurry amendment and its effect on Fusarium wilt suppression. Appl Soil Ecol 107:116–123. https://doi.org/10.1016/j.apsoil.2016.05.010

Cao ZH, Huang JF, Zhang CS, Li AF (2004) Soil quality evolution after land use change from paddy soil to vegetable land. Environ Geochem Health 26:97–103. https://doi.org/10.1023/B:EGAH.0000039572.11564.27

Cardoso IM, Kuyper TW (2006) Mycorrhizas and tropical soil fertility. Agric Ecosyst Environ 116:72–84. https://doi.org/10.1016/j.agee.2006.03.011

Cha JY, Han S, Hong HJ, Cho H, Kim D, Kwon Y, Kwon SK, Crusemann M, Lee YB, Kim JF, Giaever G, Nislow C, Moore BS, Thomashow LS, Weller DM, Kwak YS (2016) Microbial and biochemical basis of a Fusarium wilt-suppressive soil. ISME J 10:119–129. https://doi.org/10.1038/ismej.2015.95

Chakraborty I, Maity P (2020) COVID-19 outbreak: migration, effects on society, global environment and prevention. Sci Tot Environ 728:138882. https://doi.org/10.1016/j.scitotenv.2020.138882

Chakraborty S, Newton AC (2011) Climate change, plant diseases and food security: an overview. Plant Pathol 60(1):2–14. https://doi.org/10.1111/j.1365-3059.2010.02411.x

Chakraborty S, Rhee KY (2015) Tuberculosis drug development: history and evolution of the mechanism-based paradigm. Cold Spring Harb. Perspect. Med 5:a021147. https://doi.org/10.1101/cshperspect.a021147

Chandrashekara C, Kumar R, Bhatt JC, Chandrashekara KN (2012) Supressive soils in plant disease management. In: Singh VK, Singh Y, Singh A (eds) Eco-friendly innovative approaches in plant disease management. International Book Distributors, India, pp 241–256. https://doi.org/10.13140/2.1.5173.7608

Chaparro JM, Sheflin AM, Manter DK, Vivanco JM (2012) Manipulating the soil microbiome to increase soil health and plant fertility. Biol Ferti Soils 48:489–499. https://doi.org/10.1007/s00374-012-0691-4

Charlop-Powers Z, Pregitzer CC, Lemetre C, Ternei MA, Maniko J, Hover BM, Calle PY, McGuire KL, Garbarino J, Forgione HM, Charlop-Powers S, Brady SF (2016) Urban park soil microbiomes are a rich reservoir of natural product biosynthetic diversity. Proc Natl Acad Sci USA 113(51):14811–14816. https://doi.org/10.1073/pnas.1615581113

Chen M, Li X, Yang Q, Chi X, Pan L, Chen N, Yang Z, Wang T, Wang M, Yu S (2014) Dynamic succession of soil bacterial community during continuous cropping of peanut (Arachis hypogaea L.). PLoS One 9:e101355. https://doi.org/10.1371/journal.pone.0101355

Chen MH, Nelson EB (2008) Seed-colonizing microbes from municipal biosolids compost suppress Pythium ultimum damping-off on different plant species. Phytopathol 98(9):1012–1018. https://doi.org/10.1094/PHYTO-98-9-1012

Chen XH, Koumoutsi A, Scholz R, Eisenreich A, Schneider K, Heinemeyer I, Morgenstern B, Voss B, Hess WR, Reva O, Junge H (2007) Comparative analysis of the complete genome sequence of the plant growth-promoting bacterium Bacillus amyloliquefaciens FZB42. Nat Biotechnol 25(9):1007–1014. https://doi.org/10.1002/9781118297674.ch83

Claessen D, Rozen DE, Kuipers OP, Søgaard-Andersen L, van Wezel GP (2014) Bacterial solutions to multicellularity: a tale of biofilms, filaments and fruiting bodies. Nat Rev Microbiol 12:115–124. https://doi.org/10.1038/nrmicro3178

Clardy J, Fischbach MA, Walsh CT (2006) New antibiotics from bacterial natural products. Nat Biotechnol 24:1541–1550. https://doi.org/10.1038/nbt1266

Conn KL, Lazarovits G (1999) Impact of animal manures on verticillium wilt, potato scab, and soil microbial populations. Can J Plant Pathol 21:81–92. https://doi.org/10.1080/07060661.1999.10600089

Cook RJ (2014) Plant Health Management: Pathogen Suppressive Soils. In: Alfen V (ed) Neal K. Academic Press, Encyclopedia of Agriculture and Food Systems, pp 441–455. https://doi.org/10.1016/B978-0-444-52512-3.00182-0

Cook RJ, Baker KF (1983) The nature and practice of biological control of plant pathogens. The American Phytopathological Society, St. Paul, p 539. https://doi.org/10.1016/0048-4059(84)90064-x

Cook RJ, Thomashow LS, Weller DM, Fujimoto D, Mazzola M, Bangera G, Kim D (1995) Molecular mechanisms of defense by rhizobacteria against root disease. Proc Natl Acad Sci USA 92(10):4197–4201. https://doi.org/10.1073/pnas.92.10.4197

Cordovez V, Carrion VJ, Etalo DW, Mumm R, Zhu H, van Wezel GP et al (2015) Diversity and functions of volatile organic compounds produced by Streptomyces from a disease-suppressive soil. Front Microbiol 6:1081. https://doi.org/10.3389/fmicb.2015.01081

Costa JL, Menge JA, Casal WL (2000) Biological control of Phytophthora root rot of avocado with microorganisms grown in organic mulches. Br J Microbiol 31:239–246

Cotxarrera L, Trillas-Gay MI, Steinberg C, Alabouvette C (2002) Use of sewage sludge compost and Trichoderma asperellum isolates to suppress Fusarium wilt of tomato. Soil Biol Biochem 34:467–476. https://doi.org/10.1016/s0038-0717(01)00205-x

Coventry E, Noble R, Whipps JM (2001) Composting of onion and other vegetable wastes, with particular reference to Allium white rot. Report CSA 4862. Horticulture Research International, Wellesbourne, Warwick, UK, pp 1–95

Cretoiu MS, Korthals GW, Visser JH, van Elsas JD (2013) Chitin amendment increases soil suppressiveness toward plant pathogens and modulates the actinobacterial and oxalobacteraceal communities in an experimental agricultural field. Appl Environ Microbiol 79:5291–5301. https://doi.org/10.1128/AEM.01361-13

Crowder DW, Jabbour R (2014) Relationships between biodiversity and biological control in agroecosystems: current status and future challenges. Biol Control 75:8–17. https://doi.org/10.1016/j.biocontrol.2013.10.010

D’Costa VM, Griffith E, Wright GD (2007) Expanding the soil antibiotic resistome: exploring environmental 962 diversity. Curr Opin Microbiol 10:481–489. https://doi.org/10.1016/j.mib.2007.08.009

Davies KG, Rowe JA, Williamson VM (2008) Inter- and intra-specific cuticle variation between amphimictic and parthenogenetic species of root knot nematode (Meloidogyne spp.) as revealed by a bacterial parasite (Pasteuria penetrans). Int J Parasitol 38:851–859. 10 .1016/j.ijpara.2007.11.007

Davis JR, Huisman OC, Westermann DT, Hafez SL, Everson DO, Sorenson LH, Schneider AT (1996) Effects of green manures on verticillium wilt of potato. Phytopathology 86:444–453. https://doi.org/10.1094/Phyto-86-444

Dawson TP, Perryman AH, Osborne TM (2016) Modelling impacts of climate change on global food security. Clim Chang 134:429–440. https://doi.org/10.1007/s10584-014-1277-y

De Leij FAAM, Sutton SJ, Whipps JM, Fenlon JS, Lynch JM (1995) Impact of field release of genetically modified Pseudomonas fluorescens on indigenous microbial population of wheat. Appl Environ Microbiol 61:3443–3453. https://doi.org/10.1128/aem.61.9.3443-3453.1995

Di Cello F, Bevivino L, Chiarini R, Fani R, Paffetti D et al (1997) Biodiversity of a Burkholderia cepacia population isolated from the maize rhizosphere at different plant growth stages. Appl Environ Microbiol 63:4485–4493. https://doi.org/10.1128/aem.63.11.4485-4493.1997

Dijkstra FA, Morgan JA, Blumenthal D, Follett RF (2010) Water limitation and plant inter-specific competition reduce rhizosphere-induced C decomposition and plant N uptake. Soil Biol Biochem 42:1073–1082. https://doi.org/10.1016/j.soilbio.2010.02.026

Dong L, Li X, Huang L, Gao Y, Zhong L et al (2014) Lauric acid in crown daisy root exudates potently regulates root-knot nematode chemotaxis and distrupts Mi-flp-18 expression to block infection. J Experi Bot 65:131–114. https://doi.org/10.1093/jxb/ert356

Döring TF, Rosslenbroich D, Giese C, Athmann M, Watson C, Vágó I, Kátai J, Tállai M, Bruns C (2020) Disease suppressive soils vary in resilience to stress. Appl Soil Ecol 149:103482. https://doi.org/10.1016/j.apsoil.2019.103482

Durán P, Tortella G, Viscardi S, Barra PJ, Carrión VJ, de la Luz MM, José PM (2018) Microbial community composition in take-all suppressive soils. Frontiers in Microbiology 9:2198. https://doi.org/10.3389/fmicb.2018.02198

Duveiller E, Singh RP, Nicol JM (2007) The challenges of maintaining wheat productivity: pests, diseases, and potential epidemics. Euphytica 157:417–430. https://doi.org/10.1007/s10681-007-9380-z

El-Masry MH, Khalil AI, Hassouna MS, Ibrahim HAH (2002) In-situ and in vivo suppressive effect of agricultural composts and their water extracts on some phytopathogenic fungi. World J Microbiol Biotech 18:551–558

Expósito RG, de Bruijn I, Postma J, Raaijmakers JM (2017) Current insights into the role of Rhizosphere bacteria in disease suppressive soils. Frontiers in Microbiology 8:1–12. https://doi.org/10.3389/fmicb.2017.02529

Fernandes JM, Cunha GR, Del Ponte E et al (2004) Modelling fusarium head blight in wheat under climate change using linked process-based models. In: Canty SM, Boring T, Wardwell J, Ward RW (eds) 2nd International Symposium on Fusarium Head Blight; Incorporating the 8th European Fusarium Seminar; 2004, 11–15 December. Orlando, FL, USA, pp 441–444

Fernando WGD, Ramarathnam R, Krishnamoorthy AS, Savchuk SC (2005) Identification and use of potential bacterial organic antifungal volatiles in biocontrol. Soil Biol Biochem 37:955–964. https://doi.org/10.1016/j.soilbio.2004.10.021

Finney DM, Buyer JS, Kaye JP (2017) Living cover crops have immediate impacts on soil microbial community structure and function. J Soil Water Cons 72:361–373. https://doi.org/10.2489/jswc.72.4.361

Fradkin A, Patrick ZA (1985) Effect of matric potential, pH, temperature, and clay minerals on bacterial colonization of conidia of Cochliobolus sativus and on their survival in soils. Can J Plant Pathol 7:19–27

Fravel DR (2005) Commercialization and implementation of biocontrol. Annu Rev Phytopathol 43:337–359

Freitas LG, Ferraz S, Muchovej JJ (1995) Effectiveness of different isolates of Paecilomyces lilacinus and an isolate of Cylindrocarpon destructans on the control of Meloidogyne javanica. Nematropica 25:109–115. http: //journals.fcla.edu/nematropica/article/view/64128

Gao Z, Karlsson I, Geisen S, Kowalchuk G, Jousset A (2019) Protists: puppet masters of the rhizosphere microbiome. Trends Plant Sci. 24:165–176. https://doi.org/10.1016/j.tplants.2018.10.011

Garbeva P, Postma J, van Veen JA, van Elsas JD (2006) Effect of above- ground plant species on soil microbial community structure and its impact on suppression of Rhizoctonia solani AG3. Environ Microbiol 8:233–246. https://doi.org/10.1111/j.1462-2920.2005.00888.x

Garbeva P, van Veen JA, van Elsas JD (2004) Microbial diversity in soil: selection of microbial populations by plant and soil type and implications for disease suppressiveness. Ann Rev Phytopathol 42(1):243–270. https://doi.org/10.1146/annurev.phyto.42.012604.135455

Gavrish E, Sit CS, Cao S, Kandror O, Spoering A, Peoples A, Ling L, Fetterman A, Hughes D, Bissell A, Torrey H (2014) Lassomycin, a ribosomally synthesized cyclic peptide, kills Mycobacterium tuberculosis by targeting the ATP-dependent protease ClpC1P1P2. Chem Biol. 21(4):509–518. https://doi.org/10.1016/j.chembiol.2014.01.014

Gerlagh M (1968) Introduction of Ophiobolus graminis into new polders and its decline. Neth J Plant Pathol 74:1–97. https://doi.org/10.1007/bf02019999

Ghorbani R, Wilcockson S, Koocheki A, Leifert C (2008) Soil management for sustainable crop disease control: a review. Environ Chem Lett 6:149–162. https://doi.org/10.1007/s10311-008-0147-0

Giotis C, Theodoropoulou A, Cooper J, Hodgson R, Shotton P, Shiel R, Cretoiu Eyre M, Wilcockson S, Markellou E, Liopa-Tsakalidis A, Volakakis N, Leifert C (2012) Effect of variety choice, resistant rootstocks and chitin soil amendments on soil-borne diseases in soil-based, protected tomato production systems. Eur J Plant Pathol 134:605–617. https://doi.org/10.1007/s10658-012-0041-2

Gooday GW (1990) Physiology of microbial degradation of chitin and chitosan. Biodegradation 1:177–190

Gravato-Nobre MJ, Stroud D, O’Rourke D, Darby C, Hodgkin J (2011) Glycosylation genes expressed in seam cells determine complex surface properties and bacterial adhesion to the cuticle of Caenorhabditis elegans. Genetics 187:141–155. https://doi.org/10.1534/genetics.110.122002

Green SJ, Inbar E, Michel FC Jr, Hadar Y, Minz D (2006) Succession of bacterial communities during early plant development: transition from seed to root and effect of compost amendment. Appl Environ Microbiol 72:3975–3983. https://doi.org/10.1128/aem.02771-05

Gregory AS, Watts CW, Griffiths BS, Hallett PD, Kuan HL, Whitmore AP (2009) The effect of long-term soil management on the physical and biological resilience of a range of arable and grassland soils in England. Geoderma 153:172–185. https://doi.org/10.1016/j.geoderma.2009.08.002

Griffiths BS, Philippot L (2013) Insights into the resistance and resilience of the soil microbial community. FEMS Microbio Rev 37:112–129. https://doi.org/10.1111/j.1574-6976.2012.00343.x

Grünwald NJ, van Bruggen AHC (2000) Short-term cover crop decomposition in organic and conventional soils: soil microbial and nutrient cycling indicator variables associated with different levels of soil suppressiveness to Pythium aphanidermatum. Eur J Plant Pathol 106:51–65

Guerra CA, Heintz-Buschart A, Sikorski J, Chatzinotas A, Guerrero-Ramírez N, Cesarz S, Beaumelle L, Rillig MC, Maestre FT, Delgado-Baquerizo M, Buscot F (2020). Blind spots in global soil biodiversity and ecosystem function research. Nature communications 11(1):1-13. https://doi.org/10.1038/s41467-020-17688-2

Gustafson K, Roman M, Fenical W (1989) The macrolactins, a novel class of antiviral and cytotoxic macrolides from a deep-sea marine bacterium. J Am Chem Soc 111:7519–7524. https://doi.org/10.1021/ja00201a036

Haas D, Defago G (2005) Biological control of soil-borne pathogens by fluorescent pseudomonads. Nat Rev Microbiol 3:307–319. https://doi.org/10.1038/nrmicro1129

Hadar Y, Papadopoulou KK (2012) Suppressive composts: microbial ecology links between abiotic environments and healthy plants. Annu. Rev Phytopathol 50(50):133–153. https://doi.org/10.1146/annurev-phyto-081211-172914

Haynes RJ (2005) Labile organic matter fractions as central components of the quality of agricultural soils. An overview. Adv Agron 85:221–268. https://doi.org/10.1016/s0065-2113(04)85005-3

Henis Y, Ghaffar A, Baker R (1978) Integrated control of Rhizoctonia solani damping-off of radish: effect of successive plantings, PCNB and Trichoderma harzianum on pathogen and disease. Phytopathology 68:900–907. https://doi.org/10.1094/Phyto-68-900

Henis Y, Ghaffar A, Baker R (1979) Factors affecting sup- pressiveness to Rhizoctonia solani in soil. Phytopathology 69:1164–1169

Hewavitharana SS, Ruddell D, Mazzola M (2014) Carbon sourcedependent antifungal and nematicidal volatiles derived during anaerobic soil disinfestation. Eur J Plant Pathol 140:39–52. https://doi.org/10.1007/s10658-014-0442-5

Hjort K, Bergstrom M, Adesina MF, Jansson JK, Smalla K, Sjoling S (2010) Chitinase genes revealed and compared in bacterial isolates, DNA extracts and a metagenomic library from a phytopathogen-suppressive soil. FEMS Microbiol Ecol 71:197–207. https://doi.org/10.1111/j.1574-6941.2009.00801.x

Hoitink HAJ, Boehm MJ (1999) Biocontrol within the context of soil microbial communities: a substrate-dependent phenomenon. Annu Rev Phytopathol 37:427e446. https://doi.org/10.1146/annurev.phyto.37.1.427

Hoitink HAJ, Boehm MJ, Hadar Y (1993) Mechanisms of suppression of soilborne plant pathogens in compost-amended substrates. In: Hoitink HAJ, Keener HM (eds) Science and engineering of composting: design, environmental, microbiological and utilization aspects. Renaissance, Worthington, pp 601–621

Hoitink HAJ, Krause MS, Han DY (2001) Spectrum and mechanisms of plant disease control with composts. In: Stofella PJ, Kahn BA (eds) Compost Utilization in Horticultural Cropping Systems. Lewis Publishers, Boca Raton, USA, pp 263–274

Hoitink HAJ, Stone AG, Han DY (1997) Suppression of plant disease by composts. Hort Science 32:184–187

Honaganahalli PS, Seiber JN (1996) Health and environmental concerns over the use of fumigants in agriculture: the case of methyl bromide. Amer Chem Soc Pp:1–12

Hornby D (1998) Take-all of cereals: a regional perspective. CAB Int, Wallingford, UK, p 384

Hover BM, Kim SH, Katz M, Charlop-Powers Z, Owen JG, Ternei MA et al (2018) Culture-independent discovery of the malacidins as calcium-dependent antibiotics with activity against multidrug-resistant Gram-positive pathogens. Nature Microbiology 3(4):415–422. https://doi.org/10.1038/s41564-018-0110-1

Huang XQ, Cui HL, Yang L, Lan T, Zhang JB, Cai ZC (2017) The microbial changes during the biological control of cucumber damping-off disease using biocontrol agents and reductive soil disinfestation. Biocontrol 62:97–109. https://doi.org/10.1007/s10526-016-9768-6

Huang XQ, Liu LL, Wen T, Zhang JB, Shen QR, Cai ZC (2016a) Reductive soil disinfestations combined or not with Trichoderma for the treatment of a degraded and Rhizoctonia solani infested greenhouse soil. Sci Horti 206:51–61. https://doi.org/10.1016/j.scienta.2016.04.033

Huang XQ, Liu LL, Wen T, Zhang JB, Wang FH, Cai ZC (2016b) Changes in the soil microbial community after reductive soil disinfestation and cucumber seedling cultivation. Appl Microbiol Biotechnol 100:5581–5593. https://doi.org/10.1007/s00253-016-7362-6

Huber DM, Thompson IA (2007) Nitrogen and plant disease. In: Datnoff LE, Elmer WH, Huber DM (eds) Mineral nutrition and plant disease. The American Phytopathological Society, St Paul, pp 31–44

Imperiali N, Dennert F, Schneider J, Laessle T, Velatta C et al (2017) Relationships between root pathogen resistance, abundance and expression of Pseudomonas antimicrobial genes, and soil properties in representative Swiss agricultural soils. Front Plant Sci 8:427

Jack AL, Chapelle E, Siegel K, Edel-Hermann V, Steinberg C, Lemanceau P, Raaijmakers JM (2013) Comparative metagenomics ofdisease suppressive soils. In: Dohrmann AB, Näther A, Tebbe CC (eds) Mining and learning from metagenomes plus workshop on bioinformatic tools. Presented at 2nd Thünen Symposium on Soil Metagenomics, Braunschweig, Germany, pp 48–49

Jambhulkar PP, Sharma M, Lakshman D, Sharma P (2015) Natural mechanisms of soil suppressiveness against diseases caused by Fusarium, Rhizoctonia, Pythium, and Phytophthora. In: Meghvansi MK, Varma A (eds) Organic amendments and soil suppressiveness in plant disease management, Soil Biology, vol 46. Springer International Publishing, Switzerland, pp 95–123. https://doi.org/10.1007/978-3-319-23075-7_5

Janczura B, Ahern J, Cassells AC (2006) Integrating biological strategies to control disease in intensive agriculture. General and Applied Plant Physiology. In: Acad. M. Popov Institute of Plant Physiology, Bulgarian Academy of Sciences. Sofia, Bulgaria

Jeger MJ, Hide GA, van Den Boogert PHJF, Termorshuizen AJ, van Baarlen P (1996) Pathology and control of soil-borne fungal pathogens of potato. Potato Res 39:437–469. https://doi.org/10.1007/bf02357949

Jones JB, Jones JP, Stall RE, Zitter TA (1991) Compendium of tomato diseases. The American Phytopathological Society, St Paul, p 100

Jousset A, Rochat L, Scheu S, Bonkowski M, Keel C (2010) Predator-prey chemical warfare determines the expression of biocontrol genes by rhizosphere-associated Pseudomonas fluorescens. Appl Environ Microbiol 76:5263–5268. https://doi.org/10.1128/aem.02941-09

Jousset A, Scheu S, Bonkowski M (2008) Second- ary metabolite production facilitates establishment of rhizobacteria by reducing both protozoan preda- tion and the competitive effects of indigenous bacteria. Functional Ecol 22:714–719

Kaeberlein T, Lewis K, Epstein SS (2002) Isolating ‘uncultivable’ microorganisms in pure culture in a simulated natural environment. Science 296:1127–1129. https://doi.org/10.1126/science.1070633

Kao CW, Ko WH (1986) Suppression of Pythium splendens in a Hawaiian soil by calcium and microorganisms. Phytopathology 76:215–220

Karlen DL, Varvel GE, Bullock DG, Cruse RM (1994) Crop rotations for the 21st century. In: Sparks DL (ed) Advances in agronomy. Academic Press, Cambridge, Massachusetts, USA, pp 1–45

Kawase T, Yokokawa S, Saito A, Fuji T, Nikaidou N, Miyashita K, Watanabe T (2006) Comparison of enzymatic and antifungal properties between family 18 and 19 chitinases from S. coelicolor A3(2). Biosci Biotechnol Biochem 70:988–998. https://doi.org/10.1271/bbb.70.988

Kerry BR (1988) Fungal parasites of cyst nematodes. Agric Ecosyst Environ 24:293–295. https://doi.org/10.1016/0167-8809(88)90073-4

Kinkel LL, Bakker MG, Schlatter DCA (2011) coevolutionary framework for managing disease-suppressive soils. Annu Rev Phytopathol 49:47–67. https://doi.org/10.1146/annurev-phyto-072910-095232

Kirk JL, Beaudettea LA, Hartb M, Moutoglisc P, Klironomosb JN, Lee H, Trevors JT (2004) Methods of studying soil microbial diversity. Journal of Microbiological Methods 58:169– 188. https://doi.org/10.1016/j.mimet.2004.04.006

Kluepfel DA, McInnis TM, Zehr EI (1993) Involvement of root-colonizing bacteria in peach orchard soils suppressive of the nematode Criconemella xenoplax. Phytopathol 83:1240–1245. https://doi.org/10.1094/Phyto-83-1240

Knudsen IMB, Larsen KM, Jensen DF, Hockenhull J (2002) Potential suppressiveness of different field soils to Pythium dampling-off of sugar beet. Appl Soil Ecol 21:119–129

Kobayashi A, Kobayashi YO, Someya N, Ikeda S (2015) Community analysis of root- and tuber-associated bacteria in field-grown potato plants harboring different resistance levels against common scab. Microbes Environ 30:301–309. https://doi.org/10.1264/jsme2.me15109

Kopecky J, Samkova Z, Sarikhani E, Kyselková M, Omelka M, Kristufek V et al (2019) Bacterial, archaeal and micro-eukaryotic communities characterize a disease-suppressive or conducive soil and a cultivar resistant or susceptible to common scab. Scientific Reports 9(1):1–14. https://doi.org/10.1038/s41598-019-51570-6

Kotan R, Dikbas N, Bostan H (2009) Biological control of post-harvest disease caused by Aspergillus flavus on stored lemon fruits. Afr J Biotechnol 8:209–214

Krištůfek V, Diviš J, Dostálková I, Kalčík J (2000) Accumulation of mineral elements in tuber periderm of potato cultivars differing in susceptibility to common scab. Potato Res 43:107–114. https://doi.org/10.1007/bf02357951

Krištůfek V, Diviš J, Omelka M, Kopecký J, Sagová-Marečková M (2015) Site, year and cultivar effects on relationships between periderm nutrient contents and common scab severity. Am J Potato Res 92:473–482. https://doi.org/10.1007/s12230-015-9456-6

Kulkarni-Almeida AA, Brahma MK, Padmanabhan P, Mishra PD, Parab RR, Gaik- wad NV (2011) Fermentation, Isolation, Structure, and antidiabetic activity of NFAT-133 produced by Streptomyces strain PM0324667. AMB Express 21:1-42. https://doi.org/10.1186/2191-0855-1-42

Kwak YS, Weller DM (2013) Take-all of wheat and natural disease suppression: a review. Plant Pathology Journal 29(2):125–135. https://doi.org/10.5423/PPJ.SI.07.2012.0112

Kyselková M, Kopecký J, Frapolli M, Défago G, Ságová-Marečková M, Grundmann GL, Moënne-Loccoz Y (2009) Comparison of rhizobacterial community composition in soil suppressive or conducive to tobacco black root rot disease. ISME J 3:1127–1138. https://doi.org/10.1038/ismej.2009.61

Ladner DC, Tchounwou PB, Lawrence GW (2008) Evaluation of the effect of Ecologic on root knot nematode, Meloidogyne incognita, and tomato plant, Lycopersicon esculenum. Int J Environ Res Public Health 5:104–110. https://doi.org/10.3390/ijerph5020104

Lal R (2020) Managing soil quality for humanity and the planet. Front of Agric Sci and Engg 7(3): 251-253. 10.15302/J-FASE-2020329

Larkin RP, Hopkins DL, Martin FN (1996) Suppression of fusarium wilt of watermelon by non-pathogenic Fusarium oxysporum and other microorganisms recovered from a disease suppressive soil. Phytopathol 86:812–819

Latz E, Eisenhauer N, Rall BC, Allan E, Roscher C, Scheu S, Alexandre J (2012) Plant diversity improves protection against soil-borne pathogens by fostering antagonistic bacterial communities. J Ecol 100:597–604. https://doi.org/10.1111/j.1365-2745.2011.01940.x

Lazarovits G, Hill J, Patterson G, Conn KL, Crump NS (2007) Edaphic soil levels of mineral nutrients, pH, organic matter, and cationic exchange capacity in the geocaulosphere associated with potato common scab. Phytopathol 97:1071–1082. https://doi.org/10.1094/phyto-97-9-1071

Lee LH, Cheah YK, Sidik SM, Ab Mutalib NS, Tang YT, Lin HP, Hong K (2012) Molecular characterization of Antarctic actinobacteria and screening for antimicrobial metabolite production. World J Microbiol Biotech 28:2125–2137

Lemanceau P, Alabouvette C (1991) Biological control of fusarium diseases by fluorescent Pseudomonas and non-pathogenic Fusarium. Crop Protect 10:279–286. https://doi.org/10.1016/0261-2194(91)90006-d

Lewis K (2012) Antibiotics: Recover the lost art of drug discovery. Nature 485:439–440. https://doi.org/10.1038/485439a

Li B, Ravnskov S, Xie G, Larsen J (2007) Biocontrol of pythium damping-off in cucumber by arbuscular mycorrhiza-associated bacteria from the genus Paenibacillus. BioControl 52:863–875. https://doi.org/10.1007/s10526-007-9076-2

Li SD (1995) Quantitative assay of Rhizoctonia solani Kuhn AG-1 in soil. Soil Biol Biochem 27:251–256. https://doi.org/10.1016/0038-0717(94)00189-8

Li X, Zhang Y, Ding C, Jia Z, He Z, Zhang T, Wang X (2015) Declined soil suppressiveness to Fusarium oxysporum by rhizosphere microflora of cotton in soil sickness. Biol Fertil Soils 51(8):935–946. https://doi.org/10.1007/s00374-015-1038-8

Liebman M, Dyck E (1993) Crop rotation and intercropping strategies for weed management. Ecol Appl 3:92–122. https://doi.org/10.2307/1941795

Lin BB (2011) Resilience in agriculture through crop diversification: adaptive management for environmental change. BioScience 61:183–193. https://doi.org/10.1525/bio.2011.61.3.4

Lincke T, Behnken S, Ishida K, Roth M, Hertweck C (2010) Closthioamide: an unprecedented polythioamide antibiotic from the strictly anaerobic bacterium Clostridium cellulolyticum. Angewandte Chemie International Edition 8 49(11):2011–2013. https://doi.org/10.1002/anie.200906114

Ling LL, Schneider T, Peoples AJ, Spoering AL, Engels I, Conlon BP, Mueller A, Schäberle TF, Hughes DE, Epstein S, Jones M, Lazarides L, Steadman VA, Cohen DR, Felix CR, Fetterman KA, Millett WP, Nitti AG, Zullo AM, Lewis K (2015) A new antibiotic kills pathogens without detectable resistance. Nature 517(7535):455–459. https://doi.org/10.1038/nature14098

Litterick AM, Harrier L, Wallace P, Watson CA, Wood M (2004) The role of uncomposted materials, composts, manures, and compost extracts in reducing pest and disease incidence and severity in sustainable temperate agricultural and horticultural crop production—a review. Crit Rev Plant Sci 23:453–479. https://doi.org/10.1080/07352680490886815

Liu B, Gumpertz ML, Hu S, Ristaino JB (2007) Long-term effects of organic and synthetic soil fertility amend- ments on soil microbial communities and the development of southern blight. Soil Biol Biochem 39(9):2302–2316

Liu H, Li J, Cavalhais LC, Percy C, Verma JP, Schenk PM, Singh BK (2020) Evidence for the plant recruitment of beneficial microbes to suppress soil–borne pathogen. New Phytologist. https://doi.org/10.1101/2020.07.31.231886

Löbmann MT, Vetukuri RR, de Zinger L, Alsanius BW, Grenville-Briggs LJ, Walter AJ (2016) The occurrence of pathogen suppressive soils in Sweden in relation to soil biota, soil properties, and farming practices. Appl Soil Ecol 107:57–65. https://doi.org/10.1016/j.apsoil.2016.05.011

Lockwood JL (1990) Relation of energy stress to behaviour of soilborne plant pathogens and to disease development. In: Hornby D (ed) Biological control of soilborne plant pathogens. CAB International, Wallingford, UK, pp 197–214

Lorang JM, Liu D, Anderson NA, Schottel JL (1995) Identification of potato scab inducing and suppressive species of Streptomyces. Phytopathology 85:261–268. https://doi.org/10.1094/Phyto-85-261

Loudon AH et al (2014) Interactions between amphibians’ symbiotic bacteria cause the production of emergent anti-fungal metabolites. Front Microbiol 5:1–8 3389/fmicb.2014.00441

Mandeel Q, Baker R (1991) Mechanisms involved in biological control of Fusarium wilt of cucumber with strains of nonpathogenic Fusarium oxysporum. Phytopathol 81:462–469. https://doi.org/10.1094/phyto-81-462

Manici LM, Caputo F, Baruzzi G (2005) Additional experiences to elucidate the microbial component of soil suppressiveness towards strawberry black root rot complex. Ann Appl Biol 146:421–431 /10.1111/j.1744-7348.2005.040051.x

Manucharova NA, Vlasenko AN, Stepanov AL (2007) Temperature as an autoecological factor of chitinolytic microbial complex formation in soils. Biol Bull 34:163–169. https://doi.org/10.1134/s1062359007020094

Marschner H (1995) Mineral Nutrition of Higher Plants. Academic Press, London

Martin FN, Hancock JG (1986) Association of chemical and biological factors in soils suppressive to Pythium ultimum. Phytopathol 76:1221–1231. https://doi.org/10.1094/Phyto-76-1221

Mavrodi OV, Walter N, Elateek S, Taylor CG, Okubara PA (2012) Suppression of Rhizoctonia and Pythium root rot of wheat by new strains of Pseudomonas. Biol Control 62:93–102. https://doi.org/10.1016/j.biocontrol.2012.03.013

Mayer AMS, Rodríguez AD, Berlinck RGS, Fusetani N (2011) Marine compounds with antibacterial, anticoagulant, antifungal, anti-inflammatory, antimalarial, antiprotozoal, antituberculosis, and antiviral activities; is affecting the immune and nervous system, and other miscellaneous mechanisms of action. Comparative Biochemistry and Physiology, Part C. Marine pharmacology in 2007–8 153: 191–222. https://doi.org/10.1016/j.cbpc.2010.08.008

Mazzola M (2007) Manipulation of rhizosphere bacterial communities to induce suppressive soils. J Nematol 39:213–220

Mazzola M, Gu YH (2002) Wheat genotype-specific induction of soil microbial communities suppressive to Rhizoctonia solani AG 5 and AG 8. Phytopathology 92:1300–1307.hhtp:https://doi.org/10.1094/PHYTO.2002.92.12.1300

McDaniel MD, Tiemann LK, Grandy AS (2014) Does agricultural crop diversity enhance soil microbial biomass and organic matter dynamics? A meta-analysis. Ecol Appl 24:560–570. https://doi.org/10.1890/13-0616.1

McKellar ME, Nelson EB (2003) Compost-induced suppression of Pythium damping-off is mediated by fatty-acid metabolizing seed-colonizing microbial communities. Appl Environ Microbiol 69:452–460. https://doi.org/10.1128/aem.69.1.452-460.2003

McLaughlin A, Mineau P (1995) The impact of agricultural practices on biodiversity. Agric Ecosyst Environ 55:201–212. https://doi.org/10.1016/0167-8809(95)00609-v

Medvecky BA, Ketterings QM, Nelson EB (2007) Relationships among soilborne bean seedling diseases, Lablab purpureus L. and maize stover residue management, bean insect pests, and soil characteristics in Trans Nzoia district, Kenya. Appl Soil Ecol 35:107–119. https://doi.org/10.1016/j.apsoil.2006.05.011

Mendes R, Kruijt M, de Bruijn I, Dekkers E, van der Voort M, Schneider JHM, Piceno YM, DeSantis TZ, Andersen GL, Bakker PAHM, Raaijmakers JM (2011) Deciphering the rhizosphere microbiome for disease suppressive bacteria. Science 332:1097–1100. https://doi.org/10.1126/science.1203980

Menzies JD (1959) Occurrence and transfer of a biological factor in soil that suppresses potato scab. Phytopathol 49:648–652

Meyer JR, Linderman RG (1986) Selective influence on populations of rhizosphere or rhizoplane bacteria and actinomycetes by mycorrhizas formed by Glomus fasciculatum. Soil Biol Biochem 18:191–196. https://doi.org/10.1016/0038-0717(86)90026-x

Meyer SLF, Huettel RN, Liu XZ, Humber RA, Juba J, Nitao JK (2004) Activity of fungal culture filtrates against soybean cyst nematode and root knot nematode egg hatch and juvenile motility. Nematology 6:23–32. https://doi.org/10.1163/156854104323072883

Michel VV, Wang JF, Midmore DJ, Hartman GL (1997) Effects of intercropping and soil amendment with urea and calcium oxide on the incidence of bacterial wilt of tomato and survival of soil-borne Pseudomonas solanacearum in Taiwan. Plant Pathol 46:600–610. https://doi.org/10.1046/j.1365-3059.1997.d01-45.x

Millner PD, Ringer CE, Maas JL (2004) Suppression of Strawberry Root Disease with Animal Manure Composts. Compost Science and Utilization 12(4):298–307. https://doi.org/10.1080/1065657X.2004.10702198

Minz D, Ofek M, Hadar Y (2013) Plant rhizosphere microbial commu- nities. In: Rosenberg E, DeLong EF, Lory S, Stackebrandt E, Thompson F (eds) The prokaryotes—prokaryotic communities and ecophysiology. Springer, Berlin, pp 56–84

Momma N, Kobara Y, Uematsu S, Kita N, Shinmura A (2013) Development of biological soil disinfestations in Japan. Appl Microbiol Biotechnol 97:3801–3809. https://doi.org/10.1007/s00253-013-4826-9

Motisi N, Doré T, Lucas P, Montfort F (2010) Dealing with the variability in biofumigation efficacy through an epidemiological framework. Soil Biol Biochem 42:2044–2057. https://doi.org/10.1016/j.soilbio.2010.08.016

Mousa WK, Raizada MN (2016) Natural Disease Control in Cereal Grains, 2nd edn. Academic Press, Oxford

Murakami H, Tsushima S, Shishido Y (2000) Soil suppressiveness to clubroot disease of Chinese cabbage caused by Plasmodiophora brassicae. Soil Biol Biochem 32:1637–1642. https://doi.org/10.1016/s0038-0717(00)00079-1

Nacamulli CB, Dalmastri C, Tabacchioni S, Chiarini L (1997) Perturbation of maize rhizosphere microflora following seed bacterization with Burkholderia cepacia. MCI7. FEMS Microbiol Ecol 23:183–193. https://doi.org/10.1016/s0168-6496(97)00018-4

Neate SM (1994) Soil and crop management practices that affect root diseases of crop plants. CSIRO, East Melbourne, pp 96–106

Neumann G, Romheld V (2007) The release of root exudates as affects by the plant physiological status. In: Pinton R, Varanini Z, Nanniperi P (eds) The rhizosphere: biochemistry and organic substances at the soil-plant interface, second edn. CRC Press, Boca Raton, Florida, USA

Nichols D et al (2010) Use of ichip for high-throughput in situ cultivation of ‘uncultivable’ microbial species. Appl Environ Microbiol 76:2445–2450. https://doi.org/10.1128/aem.01754-09

O’Neill J (2016) Tackling Drug-Resistant Infections Globally: Final Report and Recommendations. In: The Review on Antimicrobial Resistance, Welcome Trust & UK Government

Oerke EC (2006) Crop losses to pests. Journal of Agricultural Science 144:31–43

Oliver MA, Gregory PJ (2015) Soil, food security and human health: a review. Eur J Soil Sci 66(2):257–276. https://doi.org/10.1111/ejss.12216

Oskay M, Üsame Tamer A, Azeri C (2004) Antibacterial activity of some actinomycetes isolated from farming soils of Turkey. Afr J Biotech 3(9):441–446

Pankhurst CE, McDonald HJ, Hawke BG, Kirkby CA (2002) Effect of tillage and stubble management on chemical and microbiological properties and the development of suppression towards cereal root disease in soils from two sites in NSW, Australia. Soil Biol Biochem 34:833–840. https://doi.org/10.1016/S0038-0717(02)00014-7

Papavizas GC, Ayers WA (1974) Aphanomyces species and their root diseases in pea and sugarbeet. United States Department of Agriculture, Agricultural Research Service. Technical Bulletin:1485

Park YS, Dutta S, Ann M, Raaijmakers JM, Park K (2015) Promotion of plant growth by Pseudomonas fluorescens strain SS101 via novel volatile organic compounds. Biochem Biophys Res Commun 461:361–365. https://doi.org/10.1016/j.bbrc.2015.04.039

Paulitz T, Baker R (1988) The formation of secondary sporangia by Pythium ultimum: the influence of organic amendments and Pythium nunn. Soil Biol Biochem 20:151–156. https://doi.org/10.1016/0038-0717(88)90031-4

Pautasso M, Döring TF, Garbelotto M, Pellis L, Jeger MJ (2012) Impacts of climate change on plant diseases – opinions and trends. Eur J Plant Pathol 133:295–313. https://doi.org/10.1007/s10658-012-9936-1

Payne DJ, Gwynn MN, Holmes DJ, Pompliano DL (2007) Drugs for bad bugs: confronting the challenges of antibacterial discovery. Nature Rev Drug Discov 6:29–40. https://doi.org/10.1038/nrd2201

Peek J, Lilic M, Montiel D, Milshteyn A, Woodworth I, Biggins JB, Ternei MA, Calle PY, Danziger M, Warrier T, Saito K, Braffman N, Fay A, Glickman MS, Darst SA, Campbell EA, Brady SF (2018) Rifamycin congeners kanglemycins are active against rifampicin-resistant bacteria via a distinct mechanism. Nature Communications 9(1):1–15. https://doi.org/10.1038/s41467-018-06587-2

Penton CR, Gupta VVSR, Tiedje JM, Neate SM, Ophel-Keller K, Gillings M, Harvey P, Pham A, Roget DK (2014) Fungal community structure in disease suppressive soils assessed by 28S LSU gene sequencing. PLoS ONE 9(4). https://doi.org/10.1371/journal.pone.0093893

Peralta AL, Sun Y, McDaniel MD, Lennon JT (2018) Crop rotational diversity increases disease suppressive capacity of soil microbiomes. Ecosphere 9(5). https://doi.org/10.1002/ecs2.2235

Perron GG et al (2015) Functional characterization of bacteria isolated from ancient arctic soil exposes diverse resistance mechanisms to modern antibiotics. PLoS One 10:e0069533. https://doi.org/10.1371/journal.pone.0069533

Persson L, Larsson-Wikstrom M, Gerhardson B (1999) Assessment of soil suppressiveness to Aphanomyces root rot of pea. Plant Dis 83:1108–12. https://doi.org/10.1094/PDIS.1999.83.12.1108

Persson L, Olsson S (2000) Abiotic characteristics of soils suppressive to Aphanomyces root rot. Soil Biol Biochem 32:1141–1150. https://doi.org/10.1016/S0038-0717(00)00030-4

Peters RD, Sturz AV, Carter MR, Sanderson JB (2003) Developing disease-suppressive soils through crop rotation and tillage management practices. Soil Till Res 72:181–192. https://doi.org/10.1016/s0167-1987(03)00087-4

Pharand B, Carisse O, Benhamou N (2002) Cytological aspects of compost-mediated induced resistance against fusarium crown and root rot in tomato. Phytopathol 92:424–438. https://doi.org/10.1094/phyto.2002.92.4.424

Picard C, di Cello F, Ventura M, Fani R, Guckert A (2000) Frequency and biodiversity of 2,4-diacetylphloroglucinol producing bacteria isolated from the maize rhizosphere at different stages of plant growth. Appl Environ Microbiol 66:948–955. https://doi.org/10.1128/aem.66.3.948-955.2000

Postma J, Montanari M, van den Boogert PHJF (2003) Microbial enrichment to enhance the disease suppressive activity. Eur J Soil Biol 39:157–163

Postma J, Scheper RWA, Schilder MT (2010) Effect of successive cauliflower plantings and Rhizoctonia solani AG 2-1 inoculations on disease suppressiveness of a suppressive and a conducive soil. Soil Biol Biochem 42:804–812. https://doi.org/10.1016/j.soilbio.2010.01.017

Postma J, Schilder MT (2015) Enhancement of soil suppressiveness against Rhizoctonia solani in sugar beet by organic amendments. Appl Soil Ecol 94:72–79. https://doi.org/10.1016/j.apsoil.2015.05.002

Raaijmakers JM, Mazolli M (2012) Diversity and natural functions of antibiotics produced by beneficial and plant pathogenic bacteria. Annu Rev Phytopathol 50:403–424. https://doi.org/10.1146/annurev-phyto-081211-172908

Raaijmakers JM, Paulitz TC, Steinberg C, Alabouvette C, Moënne-Loccoz Y (2009) The rhizosphere: a playground and battlefield for soil borne pathogens and beneficial microorganisms. Plant Soil 321:341–361. https://doi.org/10.1007/s11104-008-9568-6

Radwan MA, Farrag SAA, Abu-Elamayem MM, Ahmed NS (2012) Extraction, characterization, and nematicidal activity of chitin and chitosan derived from shrimp shell waste. Biol Fertil Soils 48:463–468. https://doi.org/10.1007/s00374-011-0632-7

Ramaswamy S, Musser JM (1998) Molecular genetic basis of antimicrobial agent resistance in Mycobacterium tuberculosis: 1998 update. Tuber Lung Dis 79:3–29

Ramette A, Moe ̈nne-Loccoz Y, Dé fago G (2006) Genetic diversity and biocontrol potential of fluorescent pseudomonads producing phloroglucinols and hydro- gen cyanide from Swiss soils naturally suppressive or conducive to Thielaviopsis basicola mediated black root rot of tobacco. FEMS Microbiol Ecol 55:369–381. https://doi.org/10.1111/j.1574-6941.2005.00052.x

Reeleder RD (2003) Fungal plant pathogens and soil biodiversity. Can J Soil Sci 83:331–336. https://doi.org/10.4141/s01-068

Reuveni R, Raviv M, Krasnovsky A, Freiman L, Medina S, Bar A, Orion D (2002) Compost induces protection against Fusarium oxysporum in sweet basil. Crop Protection 21:583–587. https://doi.org/10.1016/s0261-2194(01)00149-1

Rosenzweig N, Tiedje JM, Quensen JF, Meng Q, Hao JJ (2012) Microbial communities associated with potato common scabsuppressive soil determined by pyrosequencing analyses. Plant Dis 96:718–725. https://doi.org/10.1094/PDIS-07-11-0571

Rosenzweig WD, Stotzky G (1979) Influence of environmental factors on antagonism of fungi by bacteria in soil: clay minerals and pH. Appl Environ Microbiol 38:1120–1126

Rousk J, Bååth E, Brookes PC, Lauber CL, Lozupone C et al (2010) Soil bacterial and fungal communities across a pH gradient in an arable soil. ISME J 4:1340–1351. https://doi.org/10.1038/ismej.2010.58

Rouxel F, Alabouvette C, Louvet J (1977) Recherches sur la r´esistance des sols aux maladies. II. Incidence de traitements thermiques sur la r´esistance microbiologique d’un sol `a la Fusariose vasculaire du melon. Ann Phytopathol 9:183–192

Rudrappa T, Kirk J, Czymmek PW, Paré PW, Bais HP (2008) Root- secreted malic acid recruits beneficial soil bacteria. Plant Physiol 148:1547–1556. https://doi.org/10.2307/40066285

Sarathchandra SU, Watson RN, Cox NR, di Menna ME, Brown JA, Burch G, Neville FJ (1996) Effects of chitin amendment of soil on microorganisms, nematodes, and growth of white clover (Trifolium repens L.) and perennial ryegrass (Lolium perenne L.). Biol Fertil Soils 22:221–226. https://doi.org/10.1007/BF00382516

Scheuerell S, Sullivan D, Walter M (2005) Suppression of Seedling Damping-Off Caused by Pythium ultimum , P. irregulare , and Rhizoctonia solani in Container Media Amended with a Diverse Range of Pacific Northwest Compost Sources. Phytopathology 95:306–315 https://doi.org/10.1094/PHYTO-95-0306

Schlatter D, Kinkel L, Thomashow L, Weller D, Paulitz T (2017) Disease suppressive soils: New insights from the soil microbiome. Phytopathol 107(11):1284–1297. https://doi.org/10.1094/PHYTO-03-17-0111-RVW

Schmidt R, Cordovez V, de Boer W, Raaijmakers J, Garbeva P (2015) Volatile affairs in microbial interactions. ISME J. https://doi.org/10.1038/ismej.2015.42

Scholthof KBG (2007) The disease triangle: pathogens, the environment and society. Nat Rev Microbiol 5(2):152–156. https://doi.org/10.1038/nrmicro1596

Schulz S, Dickschat JS (2007) Bacterial volatiles: the smell of small organisms. Nat Prod Rep 24:814–842. https://doi.org/10.1039/b507392h

Secilia J, Bagyaraj DJ (1987) Bacteria and actinomycetes associated with pot cultures of vesicular arbuscular mycorrhizas. Can J Microbiol 33:1069–1073

Serra-Wittling C, Houot S, Alabouvette C (1996) Increased soil suppressiveness to Fusarium wilt of flax after addition of municipal solid waste compost. Soil Biol Biochem 28:1207–1214. https://doi.org/10.1016/0038-0717(96)00126-5

Shi SJ, Richardson AE, O’Callaghan M, DeAngelis KM, Jones EE, Stewart A, Firestone MK, Condron LM (2011) Effects of selected root exudate components on soil bacterial communities. FEMS Microbiol Ecol 77:600–610. https://doi.org/10.1111/j.1574-6941.2011.01150.x

Shi W et al (2019) The occurrence of potato common scab correlates with the community composition and function of the geocaulosphere soil microbiome. Microbiome 7:1–18. https://doi.org/10.1186/s40168-019-0629-2

Shiomi Y, Nishiyama M, Onizuka T, Marumoto T (1999) Comparison of bacterial community structures in the rhizoplane of tomato plants grownin soils suppressive and conducive toward bacterial wilt. Appl Environ Microbiol 65:3996–4001

Siegel-Hertz K, Edel-Hermann V, Chapelle E, Terrat S, Raaijmakers JM, Steinberg C (2018) Comparative microbiome analysis of a Fusarium wilt suppressive soil and a Fusarium wilt conducive soil from the Chateaurenard region. Front in Microbiol 9:568. https://doi.org/10.3389/fmicb.2018.00568

Smolinska U (2000) Survival of Sclerotium cepivorum sclerotia and Fusarium oxysporum chlamydospores in soil amended with cruciferous residues. J Phytopathol Phytopathologische Zeitschrift 148:343–349

Smukler SM, Sánchez-Moreno S, Fonte SJ, Ferris H, Klonsky K, O’Geen AT, Scow KM, Steenwerth KL, Jackson LE (2010) Biodiversity and multiple ecosystem functions in an organic farmscape. Agric Ecosyst Environ 139:80–97. https://doi.org/10.1016/j.agee.2010.07.004

Stirling GR (2014) Biological Control of Plant-Parasitic Nematodes, second edn. CAB International, Wallingford

Stone AG, Scheuerell SJ, Darby HM (2004) Suppression of soil borne diseases in field agricultural systems: organic matter management, cover cropping and other cultural practices. In: Magdoff F, Weil R (eds.) Soil Organic Matter in Sustainable Agriculture, CRC Press, Boca Raton, pp 131-177. hort.oregonstate.edu/files/Faculty_Staff/On_Campus/stonea/1294_C05.pdf

Stotzky G, Martin RT (1963) Soil mineralogy in relation to the spread of Fusarium wilt of banana in Central America. Plant Soil 18:317–337

Stotzky G (1966a) Influence of clay minerals on microorganisms. Part II: Effect of various clay species, homoionic clays, and other particles on bacteria. Can J Microbiol 12:831–848

Stotzky G (1966b) Influence of clay minerals on microorganisms. Part III: Effect of particle size, cation exchange capacity, and sur- face area on bacteria. Can J Microbiol 12:1235–1246

Stotzky G (1986) Influence of soil mineral colloids on metabolic processes, growth, adhesion, and ecology of microbes and viruses. In: Huang PM, Schnitzer M (eds) Interactions of Soil Minerals with Natural Organics and Microbes. Soil Science Society of America, Madison, pp 305–428

Stotzky G, Post AH (1967) Soil mineralogy as a possible factor in geographic distribution of Histoplasma capsulatum. Can J Microbiol 13:1–7. https://doi.org/10.1139/m67-001

Strauss SL, Greenhut RF, McClean AE, Kluepfel DA (2017) Effect of anaerobic soil disinfestation on the bacterial community and key soilborne phytopathogenic agents under walnut tree-crop nursery conditions. Plant Soil 415:493. https://doi.org/10.1007/s11104-016-3126-4

Strieker M, Marahiel MA (2009) The structural diversity of acidic lipopeptide antibiotics. Chembiochem 10:607–616. /10.1002/cbic.200800546

Stutz E, Kahr G, De fago G (1989) Clays involved in suppression of tobacco black root rot by a strain of Pseudomonas fuorescens. Soil Biol Biochem 21:361–366. https://doi.org/10.1016/0038-0717(89)90144-2

Stutz EW, Defago G, Kern H (1986) Naturally occurring fluorescent pseudomonads involved in suppression of black root rot of tobacco. Phytopathology 76:181–185. https://doi.org/10.1094/Phyto-76-181

Sullivan P (2001) Sustainable management of soil-borne plant diseases. ATTRA, USDA’s Rural Business Cooperative Service https://www.attra.org

Sun Y, Zhou T, Wang Y, Chen J, He X et al (2006) Effect of intercropping on disease management and yield of chilli pepper and maize. Acta Horticulturae Sinica 33:995–1000

Taffner J et al (2018) What is the role of Archaea in plants? New insights from the vegetation of alpine bogs. mSphere 3:e00122–e00118. https://doi.org/10.1128/mSphere.00122-18

Tamm L, Thürig B, Bruns C, Fuchs JG, Köpke U, Laustela M, Leifert C, Mahlberg N, Nietlispach B, Schmidt C, Weber F, Fließbach A (2010) Soil type, management history, and soil amendments influence the development of soil-borne (Rhizoctonia solani, Pythium ultimum) and air-borne (Phytophthora infestans, Hyaloperonospora parasitica) diseases. Eur J Plant Pathol 127:465–481. https://doi.org/10.1007/s10658-010-9612-2

Termorshuizen AJ, van Rijn E, van der Gaag DJ, Alabouvette C, Chen Y, Lagerlof J, Malandrakis AA, Paplomatas EJ, Ramert B, Ryckeboer J, Steinberg C, Zmora-Nahum S (2006) Suppressiveness of 18 composts against 7 pathosystems: variability in pathogen response. Soil Biol Biochem 38(8):2461–2477. https://doi.org/10.1016/j.soilbio.2006.03.002

Thompson SE, Levin S, Rodriguez-Iturbe I (2014) Rainfall and temperatures changes have confounding impacts on Phytophthora cinnamomi occurrence risk in the southwestern USA under climate change scenarios. Glob Change Biol 20:1299–1312. https://doi.org/10.1111/gcb.12463

Tiemann LK, Grandy AS, Atkinson EE, Marin- Spiotta E, McDaniel MD (2015) Crop rotational diversity enhances belowground communities and functions in an agroecosystem. Ecol Lett 18:761–771. https://doi.org/10.1111/ele.12453

Tilman D, Cassman KG, Matson PA, Naylor R, Polasky S (2002) Agricultural sustainability and intensive production practices. Nature 418:671–677. https://doi.org/10.1038/nature01014

Tilston EL, Pitt D, Groenhof AC (2002) Composted recycled organic matter suppresses soil-borne diseases of field crops. New Phytologist 154:731–740. https://doi.org/10.1046/j.1469-8137.2002.00411.x

Timmer RD, Korthals GW, Molendijk LPG (2003) Groebenmesters. Van teelttechniek tot ziekten en plagen. Brochure PPO 316:59

Toyota K, Kimura M (1993) Colonization of chlamydospores of Fusarium oxysporum f. sp. raphani by soil bacteria and their effects on germination. Soil Biol Biochem 25(193):197. https://doi.org/10.1016/0038-0717(93)90026-8

Uroz S et al (2016) Specific impacts of beech and Norway spruce on the structure and diversity of the rhizosphere and soil microbial communities. Sci Rep 6:1–11. https://doi.org/10.1038/srep27756

van Agtmaal M, Straathof AL, Termorshuizen A, Lievens B, Hoffland E, de Boer W (2018) Volatile-mediated suppression of plant pathogens is related to soil properties and microbial community composition. Soil Biol Biochem 117:164–174. https://doi.org/10.1016/j.soilbio.2017.11.015

van Bruggen AHC, Semenov AM (2000) In search of biological indicators for soil health and disease suppression. Appl Soil Ecol 15:13–24. https://doi.org/10.1016/s0929-1393(00)00068-8

van Bruggen AHC, Sharma K, Kaku E, Karfopoulos S, Zelenev VV, Blok WJ (2015) Soil health indicators and Fusarium wilt suppression in organically and conventionally managed greenhouse soils. Appl Soil Ecol 86:192–201. https://doi.org/10.1016/j.apsoil.2014.10.014

van Dijk K, Nelson EB (2000) Fatty acid competition as a mechanism by which Enterobacter cloacae suppresses Pythium ultimum sporangium germination and damping-off. Appl Environ Microbiol 66:5340–5347. https://doi.org/10.1128/aem.66.12.5340-5347.2000

van Overbeek LS, Senechkin IV, van Bruggen AHC (2012) Variation in microbial responses and Rhizoctonia solani AG2-2IIIB growth in soil under different organic amendment regimes. Can J Plant Pathol 34:268–276. https://doi.org/10.1080/07060661.2012.679622

Van Wezel GP, McKenzie NL, Nodwell JR (2009) Chapter 5. Applying the genetics of secondary metabolism in model actinomycetes to the discovery of new antibiotics. Methods Enzymol. 458: 117–141. 10.1016/S0076- 6879(09)04805-8

Venter ZS, Jacobs K, Hawkins HJ (2016) The impact of crop rotation on soil microbial diversity: a meta-analysis. Pedobiologia 59:215–223. https://doi.org/10.1016/j.pedobi.2016.04.001

Wall DH, Bardgett RD, Behan-Pelletier V, Herrick JE, Jones TH, Ritz K, Six J, Strong DR, van der Putten WH (2012) Soil Ecology and Ecosystem Services. Oxford University Press, Oxford

Wang Z, Wang C, Li F, Li Z, Chen M, Wang Y, Qiao X, Zhang H (2013) Fumigant activity of volatiles from Streptomyces alboflavus TD-1 against Fusarium moniliforme Sheldon. J Microbiol 51:477–483. https://doi.org/10.1007/s12275-013-2586-y

Watve MG, Tickoo R, Jog MM, Bhole BD (2001) How many antibiotics are produced by the genus Streptomyces? Arch. Microbiol 176:386–390. https://doi.org/10.1007/s002030100345

Weibelzahl-Fulton E, Dickson DW, Whitty EB (1996) Suppression of Meloidogyne incognita and M. Javanica by Pasteuria penetrans in field soil. J Nematol 28:43–49

Weller DM, Landa BB, Mavrodi OV, Schroeder KL, De La Fuente L et al (2006) Role of 2,4-Diacetylphloroglucinol-Producing Fluorescent Pseudomonas spp. in the Defense of Plant Roots. Plant Biol 9:4–20. https://doi.org/10.1055/s-2006-924473

Weller DM, Raaijmakers JM, McSpadden Gardener BB, Thomashow LS (2002) Microbial populations responsible for specific soil suppressiveness. Annu Rev Phytopathol 40:309–348. https://doi.org/10.1146/annurev.phyto.40.030402.110010

Westerlund FV, Campbell RN, Grogan RG, Duniway JM (1978) Soil factors affecting the reproduction and survival of Olpidium brassicae and its transmission of big vein agent to lettuce. Phytopathol 68:927–935

Wieland G, Neumann R, Backhaus H (2001) Variation of microbial communities in soil, rhizosphere and rhizoplane in response to crop species, soil type and crop development. Appl Environ Microbiol 67:5849–5854. https://doi.org/10.1128/AEM.67.12.5849-5854.2001

Wilson MC et al (2014) An environmental bacterial taxon with a large and distinct metabolic repertoire. Nature 506:58–62. https://doi.org/10.1038/nature12959

Wiseman BM, Neate SM, Keller KO, Smith SE (1996) Suppression of Rhizoctoniasolani anastomosis group 8 in Australia and its biological nature. Soil Biol Biochem 28:727–732

Wu T, Chellemi DO, Graham JH, Martin KJ, Rosskopf EN (2008) Comparison of soil bacterial communities under diverse agricultural land management and crop production practices. Microb Ecol 55(2):293–310. https://doi.org/10.2307/25153463

Xu L, Ravnskov S, Larsen J, Nilsson RH, Nicolaisen M (2012a) Soil fungal community structure along a soil health gradient in pea fields examined using deep amplicon sequencing. Soil Biol Biochem 46:26–32. https://doi.org/10.1016/j.soilbio.2011.11.010

Xu L, Ravnskov S, Larson J, Nicolaisen M (2012b) Linking fungal communities in roots, rhizosphere, and soil to the health status of Pisum sativum. FEMS Microbiol Ecol 82:736–745. https://doi.org/10.1111/j.1574-6941.2012.01445.x

Yang M, Zhang Y, Qi L, Mei X, Liao J et al (2014) Plant-Plant-Microbe Mechanisms Involved in Soil-Borne Disease Suppression on a Maize and Pepper Intercropping System. PLOS ONE 9(12):e115052. https://doi.org/10.1371/journal.pone.0115052

Yin C, Hulbert SH, Schroeder KL, Mavrodi O, Mavrodi D, Dhingra A, Schillinger WF, Paulitz TC (2013) Role of bacterial communities in the natural suppression of Rhizoctonia solani bare patch disease of wheat (Triticum aestivum L.). Appl Environ Microbiol 79:7428–7438. https://doi.org/10.1128/aem.01610-13

Yogev A, Raviv M, Hadar Y, Cohen R, Wolf S, Gil L, Katan J (2010) Induced resistance as a putative component of compost suppressiveness. Biol Control 54(1):46–51. https://doi.org/10.1016/j.biocontrol.2010.03.004

Zahn G, Wagai R, Yonemura S (2016) The effects of amoebal bacterivory on carbon and nitrogen dynamics depend on temperature and soil structure interactions. Soil Biol Biochem 94:133–137. https://doi.org/10.1016/j.soilbio.2015.11.021

Zak DR, Holmes WE, White DC, Peacock AD, Tilman D (2003) Plant diversity, soil microbial communities and ecosystem function: are there any links? Ecol 84(8):2042–2050. https://doi.org/10.1890/02-0433

Zumla A et al (2015) The WHO 2014 Global tuberculosis report—further to go. Lancet Glob Health 3:e10–e12. https://doi.org/10.1016/S2214