Discussion: Approximating data

Journal of the Korean Statistical Society - Tập 37 - Trang 213-215 - 2008
Frank Hampel1
1Seminar für Statistik, ETH Zurich, Switzerland

Tài liệu tham khảo

Andrews, D. F., Bickel, P. J., Hampel, F. R., Huber, P. J., Rogers, W. H., & Tukey, J. W. (1972). Robust estimates of location; survey and advances. Princeton, NJ: Princeton University Press. Field, C., & Hampel, F. (1982). Small-sample asymptotic distributions of M-estimators of location. Biometrika, 69, 29–46. Field, C., & Ronchetti, E. (1990). Small sample asymptotics. Institute of mathematical statistics monograph series. Hayward, CA. Hampel, F. (1973). Some small sample asymptotics. In Proc. Prague symp. on asymptotic statistics (pp. 109–126). Hampel, F. (1983). The robustness of some nonparametric procedures. In P. J. Bickel, K. Doksum, & J. L. Hodges, Jr. (Eds.), A Festschrift for Erich L. Lehmann (pp. 209–238). Belmont: Wadsworth. Hampel, F. (1985). The breakdown points of the mean combined with some rejection rules. Technometrics, 27, 95–107. Hampel, F. (1997). Some additional notes on the Princeton Robustness Year. In D. R. Brillinger, L. T. Fernholz, & S. Morgenthaler (Eds.), The practice of data analysis: Essays in honor of John W. Tukey (pp. 133–153). Princeton: Princeton University Press. Hampel, F. (1998). Is statistics too difficult? The Canadian Journal of Statistics, 26(3), 497–513. Hampel, F. (2001). An outline of a unifying statistical theory. In G. de Cooman, T. L. Fine, & T. Seidenfeld (Eds.), Proc. of the 2nd internat. symp. on imprecise probabilities and their applications (pp. 205–212). Shaker Publishing Maastricht 2000, ftp://ftp.stat.math.ethz.ch/Research-Reports/95.pdf Hampel, F. (2002). Some thoughts about classification. In H.-H. Bock, K. Jajuga, & A. Sokołowski (Eds.), Classification, clustering, and data analysis. Recent advances and applications (pp. 5–26). Berlin: Springer, Studies in Classification, Data Analysis, and Knowledge Organization, July 16–19, 2002, Cracow, Poland, Invited keynote lecture, 8th conference of the international federation of classification societies. Cf. also: ftp://ftp.stat.math.ethz.ch/Research-Reports/102.pdf. Hampel, F. (2006). The proper fiducial argument. In LNCS: Vol. 4123. Information Transfer and Combinatorics (pp. 511–525). Cf. also: ftp://ftp.stat.math.ethz.ch/Research-Reports/114.pdf. Hampel, F., Ronchetti, E., Rousseeuw, P., & Stahel, W. (1986). Robust statistics: The approach based on influence functions. New York: Wiley. Mächler, M.B. (1989). ‘Parametric’ smoothing quality in nonparametric regression: Shape control by penalizing inflection points. Ph.D. thesis. No. 8920. Swiss Federal Institute of Technology (ETH). Zurich. Mächler, M. B. (1995a). Variational solution of penalized likelihood problems and smooth curve estimation. The Annals of Statistics, 23, 1496–1517. Mächler, M. B. (1995b). Estimating distributions with a fixed number of modes. In H. Rieder (Ed.), Lecture notes in statistics: Vol. 109. Robust statistics, data analysis, and computer intensive methods; In honor of Peter Huber’s 60th birthday (pp. 267–276). Berlin: Springer-Verlag. Tukey, J. W. (1993). Issues relevant to an honest account of databased inference, partially in the light of Laurie Davies’s paper. Princeton: Princeton University.