Mô hình xuất hiện phân biện với điều chỉnh không gian mẫu cho theo dõi đối tượng hình ảnh

Soft Computing - Tập 27 - Trang 9787-9800 - 2023
Purandhar Reddy Vadamala, Annis Fathima Aklak1
1School of Electronics Engineering, Vellore Institute of Technology, Chennai, India

Tóm tắt

Trong các ứng dụng thị giác máy tính, theo dõi đối tượng hình ảnh là một nhiệm vụ phức tạp, trong đó sự xuất hiện của đối tượng thay đổi do biến thể ánh sáng, cản trở, xoay trục trong mặt phẳng và chuyển động nhanh. Ở các phương pháp tiên tiến nhất, các bộ theo dõi xử lý mô hình chung để giải quyết sự biến đổi hình ảnh với các thách thức đồng thời. Tuy nhiên, cách tiếp cận này không hiệu quả khi đối mặt với những thách thức đồng thời vì các đặc điểm của đối tượng khác nhau do sự biến đổi hình ảnh. Để giảm thiểu những hạn chế này, trong bài báo này, một khung theo dõi đối tượng hình ảnh dựa trên việc cập nhật đặc điểm xuất hiện của đối tượng được đề xuất. Mô hình theo dõi hình ảnh được phát triển bằng cách sử dụng thông tin không gian mẫu và các đặc điểm của đối tượng. Mẫu đối tượng được theo dõi được xác định bằng cách so sánh mẫu được theo dõi từ khung hình trước với các mẫu định hướng trong khung hình hiện tại. Để thích ứng với sự biến đổi xuất hiện, mô hình theo dõi được đề xuất cập nhật vector đặc điểm của mẫu theo dõi, các tham số chuyển động và thông tin không gian khi theo dõi đối tượng mục tiêu trong các khung hình liền kề. Các kết quả thử nghiệm trên các chuỗi video thách thức trong các tiêu chuẩn theo dõi đối tượng đã chứng minh rằng mô hình theo dõi được đề xuất có thể theo dõi các đối tượng với độ chính xác 84.5% ở tốc độ theo dõi 10.1 khung hình/giây. Phân tích định tính cho thấy mô hình theo dõi được đề xuất vượt trội hơn so với các bộ theo dõi truyền thống liên quan.

Từ khóa

#theo dõi đối tượng hình ảnh #mô hình xuất hiện #điều chỉnh không gian mẫu #thị giác máy tính #cập nhật đặc điểm

Tài liệu tham khảo

Abbass MY, Kwon KC, Kim N et al (2020) A survey on online learning for visual tracking. Vis Comput. https://doi.org/10.1007/s00371-020-01848-y Abdelpakey MH, Shehata MS, Mohamed MM, Gong M (2018) Adaptive framework for robust visual tracking. IEEE Access 6:55273–55283. https://doi.org/10.1109/ACCESS.2018.2871659 Barbero-Álvarez MA, Menéndez JM, Rodrigo JA (2020) An adaptive colour calibration for crowdsourced images in heritage preservation science. IEEE Access 8:185093–185111. https://doi.org/10.1109/ACCESS.2020.3017390 Bertinetto L, Valmadre J, Golodetz S, Miksik O, Torr PHS (2016) Staple: complementary learners for real-time tracking. In: 2016 IEEE conference on computer vision and pattern recognition (CVPR), Las Vegas, NV, USA, pp 1401–1409. https://doi.org/10.1109/CVPR.2016.156 Black MJ, Jepson AD (1998) EigenTracking: robust matching and tracking of articulated objects using a view-based representation. Int J Comput Vis 26:63–84. https://doi.org/10.1023/A:1007939232436 Buckley RR, Giorgianni EJ (2016) CIELAB for color image encoding (CIELAB, 8-Bit; domain and range, uses). In: Luo MR (eds) Encyclopedia of color science and technology. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-8071-7_14 Chan S, Zhou X, Chen S (2015) Online learning for classification and object tracking with superpixel. In: 2015 IEEE international conference on robotics and biomimetics (ROBIO), Zhuhai, China, pp 1758-1763. https://doi.org/10.1109/ROBIO.2015.7419026 Chen M, Hauptmann A (2009) MoSIFT: recognizing human actions in surveillance videos. Technical Report, Carnegie Mellon University, Pittsburgh, USA Chen CY, Hsia CH, Yang CY (2016) Evolutionary design of multiplierless lifting-based 2D DWT filters for low-resolution image processing. Multimed Tools Appl 75:9949–9972. https://doi.org/10.1007/s11042-015-2776-1 Comaniciu D, Ramesh V, Meer P (2003) Kernel-based object tracking. IEEE Trans Pattern Anal Mach Intell 25(5):564–577. https://doi.org/10.1109/TPAMI.2003.1195991 Danelljan M, Häger G, Khan FS, Felsberg M (2016) Adaptive decontamination of the training set: a unified formulation for discriminative visual tracking. In: 2016 IEEE conference on computer vision and pattern recognition (CVPR), Las Vegas, NV, USA, pp 1430–1438 https://doi.org/10.1109/CVPR.2016.159 Di Caterina G, Soraghan JJ (2012) Adaptive template matching algorithm based on SWAD for robust target tracking. Electron Lett 48(5):261–262. https://doi.org/10.1049/el.2011.3888 Fan B, Du Y, Zhu L, Sun J, Tang Y (2011) A robust template tracking algorithm with weighted active drift correction. Pattern Recognit Lett 32(9):1317–1327. https://doi.org/10.1016/j.patrec.2011.03.010 Febin IP, Jayasree K, Joy PT (2020) Violence detection in videos for an intelligent surveillance system using MoBSIFT and movement filtering algorithm. Pattern Anal Appl 23:611–623. https://doi.org/10.1007/s10044-019-00821-3 Gao J, Ling H, Hu W, Xing J (2014) Transfer learning based visual tracking with Gaussian processes regression. In: Fleet D, Pajdla T, Schiele B, Tuytelaars T (eds) Computer vision - ECCV 2014. ECCV 2014. Lecture Notes in Computer Science, vol 8691. Springer, Cham. https://doi.org/10.1007/978-3-319-10578-9_13 Hare S, et al (1 Oct. 2016) Struck: structured output tracking with kernels. IEEE Trans Pattern Anal Mach Intell 38(10):2096-2109. https://doi.org/10.1109/TPAMI.2015.2509974 Heidari H, Chalechale A, Mohammadabadi AA (2013) Accelerating of color moments and texture features extraction using GPU based parallel computing. In: 2013 8th Iranian conference on machine vision and image processing (MVIP), Zanjan, Iran, pp 430–435. https://doi.org/10.1109/IranianMVIP.2013.6780024 Henriques JF, Caseiro R, Martins P, Batista J (2015) High-speed tracking with kernelized correlation filters. IEEE Trans Pattern Anal Mach Intell 37(3):583–596. https://doi.org/10.1109/TPAMI.2014.2345390 Hong Z, Chen Zhe, Wang C, Mei X, Prokhorov D, Tao D (2015) MUlti-Store Tracker (MUSTer): a cognitive psychology inspired approach to object tracking. In: 2015 IEEE conference on computer vision and pattern recognition (CVPR), Boston, MA, USA, pp 749-758. https://doi.org/10.1109/CVPR.2015.7298675 Hsia C, Guo J, Chiang J (2009) Improved low-complexity algorithm for 2-D integer lifting-based discrete wavelet transform using symmetric mask-based scheme. IEEE Trans Circuits Syst Video Technol 19(8):1202–1208. https://doi.org/10.1109/TCSVT.2009.2020259 Hsia C, Guo J, Chiang J, Lin C (2009) “A novel fast algorithm based on SMDWT for visual processing applications. In: 2009 IEEE international symposium on circuits and systems, Taipei, Taiwan, pp 762–765. https://doi.org/10.1109/ISCAS.2009.5117860 Jepson AD, Fleet DJ, El-Maraghi TF (2003) Robust online appearance models for visual tracking. IEEE Trans Pattern Anal Mach Intell 25(10):1296–1311. https://doi.org/10.1109/TPAMI.2003.1233903 Jia X, Lu H, Yang M (2012) Visual tracking via adaptive structural local sparse appearance model. In: 2012 IEEE conference on computer vision and pattern recognition, Providence, RI, USA, pp 1822–1829. https://doi.org/10.1109/CVPR.2012.6247880 Jia X, Lu H, Yang M (2012) Visual tracking via adaptive structural local sparse appearance model. In: 2012 IEEE conference on computer vision and pattern recognition, Providence, RI, USA, pp 1822–1829. https://doi.org/10.1109/CVPR.2012.6247880 Kang B, Liang D, Zhang S (2017) Robust visual tracking via multi-view discriminant based sparse representation. In: 2017 IEEE international conference on image processing (ICIP), Beijing, China, pp 2587–2591. https://doi.org/10.1109/ICIP.2017.8296750 Kwon J, Lee KM (2010) Visual tracking decomposition. In: 2010 IEEE computer society conference on computer vision and pattern recognition, San Francisco, CA, USA, pp 1269–1276. https://doi.org/10.1109/CVPR.2010.5539821 Lan X, Ma AJ, Yuen PC (2014) Multi-cue visual tracking using robust feature-level fusion based on joint sparse representation. In: 2014 IEEE conference on computer vision and pattern recognition, Columbus, OH, USA, pp 1194–1201. https://doi.org/10.1109/CVPR.2014.156 Li X, Hu W, Shen C, Zhang Z, Dick A, Van Den Hengel AV (2013) A survey of appearance models in visual object tracking. ACM Trans Intell Syst Technol 4(4):48 pages. https://doi.org/10.1145/2508037.2508039 Li Z, Zhang J, Zhang K, Li Z (2018) Visual tracking with weighted adaptive local sparse appearance model via spatio-temporal context learning. IEEE Trans Image Process 27(9):4478–4489. https://doi.org/10.1109/TIP.2018.2839916 Li Y, Yang C, Zhang L, Xia R, Fan L, Xie W (2018) A novel SURF based on a unified model of appearance and motion-variation. IEEE Access 6:31065–31076. https://doi.org/10.1109/ACCESS.2018.2832290 Li P, Wang D, Wang L, Lu H (2018) Deep visual tracking: review and experimental comparison. Pattern Recognit 76:323–338. https://doi.org/10.1016/j.patcog.2017.11.007 Liu W, Sun X, Li D (2019) Robust object tracking via online discriminative appearance modeling. EURASIP J Adv Signal Process 2019:48. https://doi.org/10.1186/s13634-019-0646-0 Lukežič A, Vojíř T, Čehovin Zajc L et al (2018) Discriminative correlation filter tracker with channel and spatial reliability. Int J Comput Vis 126:671–688. https://doi.org/10.1007/s11263-017-1061-3 Lv M, Wang L, Hou Y, Gao Q, Hou R (2018) Mean shift tracker with grey prediction for visual object tracking. Can J Electr Comput Eng 41(4):172–178. https://doi.org/10.1109/CJECE.2018.2875142 Ma C, Huang J, Yang X, Yang M (2015) Hierarchical convolutional features for visual tracking. In: 2015 IEEE international conference on computer vision (ICCV), Santiago, Chile, pp 3074–3082. https://doi.org/10.1109/ICCV.2015.352 Mei X, Ling H (2011) Robust visual tracking and vehicle classification via sparse representation. IEEE Trans Pattern Anal Mach Intell 33(11):2259–72. https://doi.org/10.1109/TPAMI.2011.66 Morimoto T, Kiriyama O, Harada Y, Adachi H, Koide T, Mattausch HJ (2005) Object tracking in video pictures based on image segmentation and pattern matching. In: 2005 IEEE international symposium on circuits and systems, Kobe, Japan, pp. 3215–3218 Vol. 4, https://doi.org/10.1109/ISCAS.2005.1465312 Nai K, Li Z, Li G, Wang S (2018) Robust object tracking via local sparse appearance model. IEEE Trans Image Process 27(10):4958–4970. https://doi.org/10.1109/TIP.2018.2848465 Peng J, Palaniappan K, Candemir S, Seetharaman G (2012) KL based data fusion for target tracking. In: Proceedings of the 21st international conference on pattern recognition (ICPR2012), Tsukuba, Japan, pp 3480–3483 Pham I, Jalovecky R, Polasek M (2015) Using template matching for object recognition in infrared video sequences. In: 2015 IEEE/AIAA 34th digital avionics systems conference (DASC), Prague, Czech Republic, pp 8C5-1-8C5-9. https://doi.org/10.1109/DASC.2015.7311477 Resmi HB, Deepambika VA, Abdul Rahman M (2015) Symmetric mask wavelet based detection and tracking of moving objects using variance method. Procedia Comput Sci 58:58–65. https://doi.org/10.1016/j.procs.2015.08.012 Siogkas GK, Dermatas ES (2006) Detection, tracking and classification of road signs in adverse conditions. In: MELECON 2006 - 2006 IEEE Mediterranean electrotechnical conference, Malaga, Spain, pp 537–540. https://doi.org/10.1109/MELCON.2006.1653157 Smeulders AWM, Chu DM, Cucchiara R, Calderara S, Dehghan A, Shah M (2014) Visual tracking: an experimental survey. IEEE Trans Pattern Anal Mach Intell 36(7):1442–1468. https://doi.org/10.1109/TPAMI.2013.230 Sun J, He F, Chen Y et al (2016) A multiple template approach for robust tracking of fast motion target. Appl Math J Chin Univ 31:177–197. https://doi.org/10.1007/s11766-016-3378-z Thanikasalam K, Fookes C, Sridharan S, Ramanan A, Pinidiyaarachchi A (2020) Target-specific siamese attention network for real-time object tracking. IEEE Trans Inf Forensics Secur 15:1276–1289. https://doi.org/10.1109/TIFS.2019.2935871 Wu Y, Lim J, Yang M (2013) Online object tracking: a benchmark. In: 2013 IEEE conference on computer vision and pattern recognition, Portland, OR, USA, pp 2411–2418. https://doi.org/10.1109/CVPR.2013.312 Xianglei Y, Guixi L (2019) Effective appearance model update strategy in object tracking. IET Comput Vis 13,6:531–541. https://doi.org/10.1049/iet-cvi.2018.5091 Xie Y, Zhang W, Li C, Lin S, Qu Y, Zhang Y (2014) Discriminative object tracking via sparse representation and online dictionary learning. IEEE Trans Cybern 44(4):539–553. https://doi.org/10.1109/TCYB.2013.2259230 Xue W, Feng Z, Xu C, Liu T, Meng Z, Zhang C (2018) Visual tracking via improving motion model and model updater. Int J Adv Robot Syst. https://doi.org/10.1177/1729881418756238 Yang Y, Yang J, Zhang Z et al (2017) High-speed visual target tracking with mixed rotation invariant description and skipping searching. Sci China Inf Sci 60:062401. https://doi.org/10.1007/s11432-016-0037-0 Zhang T, Ghanem B, Liu S, Ahuja N (2012) Robust visual tracking via multi-task sparse learning. In: 2012 IEEE conference on computer vision and pattern recognition, Providence, RI, USA, pp 2042–2049. https://doi.org/10.1109/CVPR.2012.6247908 Zhang J, Ma S, Sclaroff S (2014) MEEM: robust tracking via multiple experts using entropy minimization. In: Fleet D, Pajdla T, Schiele B, Tuytelaars T (eds) Computer vision - ECCV 2014. ECCV 2014. Lecture Notes in Computer Science, vol 8694. Springer, Cham. https://doi.org/10.1007/978-3-319-10599-4_13 Zhang T, Xu C, Yang M (2019) Robust structural sparse tracking. IEEE Trans Pattern Anal Mach Intell 41(2):473–486. https://doi.org/10.1109/TPAMI.2018.2797082 Zheng J, Li B, Xin M et al (2019) Structured fragment-based object tracking using discrimination, uniqueness, and validity selection. Multimedia Syst 25:487–511. https://doi.org/10.1007/s00530-017-0556-7 Zheng J, Li B, Xin M et al (2019) Structured fragment-based object tracking using discrimination, uniqueness, and validity selection. Multimedia Syst 25:487–511. https://doi.org/10.1007/s00530-017-0556-7 Zhou SK, Chellappa R, Moghaddam B (2004) Visual tracking and recognition using appearance-adaptive models in particle filters. IEEE Trans Image Process 13(11):1491–1506. https://doi.org/10.1109/TIP.2004.836152