Discrimination of mining microseismic events and blasts using convolutional neural networks and original waveform
Tóm tắt
Từ khóa
Tài liệu tham khảo
ZHANG Chu-xuan, LI Xi-bing, DONG Long-jun, MA Ju, HUANG Lin-qi. Analysis of microseismic activity parameters pre- and post roof caving and early warning [J]. Chinese Journal of Rock Mechanics & Engineering, 2016, 35: 3214–3221. DOI: https://doi.org/10.13722/j.cnki.jrme.2015.0928.
XU Nu-wen, LIANG Zheng-zhao, TANG Chun-an, DAI Feng, ZHOU Zhong, SHA Chun. Three-dimensional feedback analysis of rock slope stability based on microseismic monitoring [J]. Chinese Journal of Rock Mechanics and Engineering, 2014, 33: 3093–3014. DOI: https://doi.org/10.13722/j.cnki.jrme.2014.s1.071.
MONDAL D, ROY P N S. Fractal and seismic b-value study during dynamic roof displacements (roof fall and surface blasting) for enhancing safety in the longwall coal mines [J]. Engineering Geology, 2019, 253: 184–204. DOI: https://doi.org/10.1016/j.enggeo.2019.03.018.
GONG Feng-qiang, SI Xue-feng, LI Xi-bing, WANG Shan-yong. Experimental investigation of strain rockburst in circular caverns under deep three-dimensional high-stress conditions [J]. Rock Mechanics and Rock Engineering, 2019, 52(4): 1459–1474. DOI: https://doi.org/10.1007/s00603-018-1660-5.
MA Tian-hui, TANG Chun-an, TANG Shi-bin, KUANG Liang, YU Qun, KONG De-qing, ZHU Xu. Rockburst mechanism and prediction based on microseismic monitoring [J]. International Journal of Rock Mechanics and Mining Sciences, 2018, 110: 177–188. DOI: https://doi.org/10.1016/j.ijrmms.2018.07.016.
MA Chun-chi, LI Tian-bin, ZHANG Hang, JIANG Yu-peng, SONG Tao. A method for numerical simulation based on microseismic information and the interpretation of hard rock fracture [J]. Journal of Applied Geophysics, 2019, 164: 214–224. DOI: https://doi.org/10.1016/j.jappgeo.2019.03.014.
DOU Lin-ming, CAI Wu, CAO An-ye, GUO Wen-hao. Comprehensive early warning of rock burst utilizing microseismic multi-parameter indices [J]. International Journal of Mining Science and Technology, 2018, 28: 767–774. DOI: https://doi.org/10.1016/j.ijmst.2018.08.007.
MA Ju, DONG Long-jun, ZHAO Guo-yan, LI Xi-bing. Discrimination of seismic sources in an underground mine using full waveform inversion [J]. International Journal of Rock Mechanics and Mining Sciences, 2018, 106: 213–222. DOI: https://doi.org/10.1016/j.ijrmms.2018.04.032.
ZHANG Peng-hai, YANG Tian-hong, YU Q L, XU Tao, SHI Wen-hao, LI Shu-cai. Study of a seepage channel formation using the combination of microseismic monitoring technique and numerical method in Zhangmatun iron mine [J]. Rock Mechanics and Rock Engineering, 2016, 49: 3699–3708. DOI: https://doi.org/10.1007/s00603-016-1007-z.
AMINZADEH F, TAFTI T A, MAITY D. An integrated methodology for sub-surface fracture characterization using microseismic data: A case study at the NW Geysers [J]. Computers & Geosciences, 2013, 54: 39–49. DOI: https://doi.org/10.1016/j.cageo.2012.10.015.
ZHAI Hong-yu, CHANG Xu, WANG Yi-bo, YAO Zhen-xing. Inversion for microseismic focal mechanisms in attenuated strata and its resolution [J]. Chinese Journal of Geophysics-Chinese Edition, 2016, 59: 3025–3036. DOI: https://doi.org/10.6038/cjg20160825. (in Chinese)
YANG Cheng-xiang, LUO Zhou-quan, TANG Li-zhong. Study on rule of geostatic activity based on microseismic monitoring technique in deep mining [J]. Chinese Journal of Rock Mechanics and Engineering, 2007, 26(4): 818–824. DOI: https://doi.org/10.1016/S1872-2067(07)60020-5.
DONG Long-jun, SUN Dao-yuan, LI Xi-bing, DU Kun. Theoretical and experimental studies of localization methodology for AE and microseismic sources without pre-measured wave velocity in mines [J]. IEEE Access, 2017, 5: 16818–16828. DOI: https://doi.org/10.1109/ACCESS.2017.2743115.
DONG Long-jun, SHU Wei-wei, LI Xi-bing, HAN Guang-jie, ZOU Wei. Three dimensional comprehensive analytical solutions for locating sources of sensor networks in unknown velocity mining system [J]. IEEE Access, 2017, 5: 11337–11351. DOI: https://doi.org/10.1109/ACCESS.2017.2710142.
DONG Long-jun, SHU Wei-wei, HAN Guang-jie, LI Xi-bing, WANG Jian. A multi-step source localization method with narrowing velocity interval of cyber-physical systems in buildings [J]. IEEE Access, 2017, 5: 20207–20219. DOI: https://doi.org/10.1109/ACCESS.2017.2756855.
DONG Long-jun, LI Xi-bing, MA Ju, TANG Li-zhong. Three-dimensional analytical comprehensive solutions for acoustic emission/microseismic sources of unknown velocity system [J]. Chin J Rock Mech Eng, 2017, 36: 186–197. DOI: https://doi.org/10.13722/j.cnki.jrme.2015.1765.
DONG Long-jun, LI Xi-bing, TANG Li-zhong, GONG Feng-qiang. Mathematical functions and parameters for microseismic source location without pre-measuring speed [J]. Chinese Journal of Rock Mechanics and Engineering, 2011, 30: 2057–2067. DOI: https://doi.org/10.1016/j.cnsns.2011.01.018.
FRANTTI G E, LEVEREAULT L A. Auditory discrimination of seismic signals from earthquakes and explosions [J]. Bulletin of the Seismological Society of America, 1965, 55: 1–25. DOI: https://doi.org/10.1016/0014-4835(75)90080-9.
BOOKER A, MITRONOVAS W. An application of statistical discrimination to classify seismic events [J]. Bulletin of the Seismological Society of America, 1964, 54: 961–971. DOI: https://doi.org/10.1596/1813-9450-4793.
TAYLOR S R. Analysis of high-frequency Pg/Lg ratios from NTS explosions and western US earthquakes [J] Bulletin of the Seismological Society of America, 1996, 86: 1042–1053. http://library.sciencemadness.org/lanl2_a/lib-www/la-pubs/00326269.pdf.
MALOVICHKO D. Discrimination of blasts in mine seismology [C]// Deep Mining. 2012: 161–171. DOI: https://doi.org/10.36487/ACG_rep/1201_11_malovichko.
JIANG Wen-wu, YANG Zuo-lin, XIE Jian-min, LI Jia-fu. Application of FFT spectrum analysis to identify microseismic signals [J]. Science & Technology Review, 2015, 33: 86–90. DOI: https://doi.org/10.3981/j.issn.1000-7857.2015.02.013.
DOWLA F U. Neural networks in seismic discrimination [J]. Nato Asi, 1995, 303: 777–789. DOI: https://doi.org/10.1007/978-94-011-0419-7_41.
BENBRAHIM M, DAOUDI A, BENJELLOUN K, IBENBRAHIM A. Discrimination of seismic signals using artificial neural networks [C]// The Second World Enformatika Conference, WEC’05. Istanbul, Turkey, 2005, http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.106.144.
ZHAO Guo-yan, MA Ju, DONG Long-jun, LI Xi-bing, CHEN Guang-hui, ZHANG Chu-xuan. Classification of mine blasts and microseismic events using starting-up features in seismograms [J]. Transactions of Nonferrous Metals Society of China, 2015, 25: 3410–3420. DOI: https://doi.org/10.1016/S1003-6326(15)63976-0.
MULLER S, GARDA P, MULLER J D, CANSI Y. Seismic events discrimination by neuro-fuzzy merging of signal and catalogue features [J]. Physics and Chemistry of the Earth, Part A: Solid Earth and Geodesy, 1999, 24: 201–206. DOI: https://doi.org/10.1016/S1464-1895(99)00019-8.
ORLIC N, LONCARIC S. Earthquake—explosion discrimination using genetic algorithm-based boosting approach [J]. Computers & Geosciences, 2010, 36: 179–185. DOI: https://doi.org/10.1016/j.cageo.2009.05.006.
DONG Long-jun, LI Xi-bing, XIE Gong-nan. Nonlinear methodologies for identifying seismic event and nuclear explosion using random forest, support vector machine, and naive Bayes classification [J]. Abstract and Applied Analysis, 2014: 459137. DOI: https://doi.org/10.1155/2014/459137.
VALLEJOS J A, MCKINNON S D. Logistic regression and neural network classification of seismic records [J]. International Journal of Rock Mechanics and Mining Sciences, 2013, 62: 86–95. DOI: https://doi.org/10.1016/j.ijrmms.2013.04.005.
DONG Long-jun, WESSELOO J, POTVIN Y, LI Xi-bing. Discrimination of mine seismic events and blasts using the fisher classifier, naive bayesian classifier and logistic regression [J]. Rock Mech. Rock Eng, 49(1): 183–211. DOI: https://doi.org/10.1007/s00603-015-0733-y.
SHANG Xue-yi, LI Xi-bing, MORALES-ESTEBAN A, CHEN Guang-hui. Improving microseismic event and quarry blast classification using artificial neural networks based on principal component analysis [J]. Soil Dynamics and Earthquake Engineering, 2017, 99: 142–149. DOI: https://doi.org/10.1016/j.soildyn.2017.05.008.
HUBEL D H, WIESEL T N. Receptive fields, binocular interaction and functional architecture in the cat’s visual cortex [J]. The Journal of physiology, 1962, 160: 106–154. DOI: https://doi.org/10.1113/jphysiol.1962.sp006837.
FUKUSHIMA K. Neocognitron: A self-organizing neural network model for a mechanism of pattern recognition unaffected by shift in position [J]. Biological Cybernetics, 1980, 36: 193–202. DOI: https://doi.org/10.1007/BF00344251.
LI Zhong-mei, GUI Wei-hua, ZHU Jian-yong. Fault detection in flotation processes based on deep learning and support vector machine [J]. Journal of Central South University, 2019, 26(9): 2504–2515. DOI: https://doi.org/10.1007/s11771-019-4190-8.
TIVIVE F H C, BOUZERDOUM A. A new class of convolutional neural networks (SICoNNets) and their application of face detection. [C]// Proceedings of the International Joint Conference on Neural Networks, IEEE, 2003. https://ieeexplore.ieee.org/document/1223742.
SHAO Jie, QIAN Yong-sheng. Three convolutional neural network models for facial expression recognition in the wild [J]. Neurocomputing, 2019, 355: 82–92. DOI: https://doi.org/10.1016/j.neucom.2019.05.005.
KÖLSCH A, AFZAL M Z, EBBECKE M, LIWICKI M. Real-time document image classification using deep CNN and extreme learning machines [EB/OL] 2017-11-03. https://arxiv.org/pdf/1711.05862v1.pdf DOI: https://doi.org/10.1109/ICDAR.2017.217.
SHARAD J, SURAJ S, NITIN K. First steps toward CNN based source classification of document images shared over messaging app [J]. Signal Processing: Image Communication, 2019, 78: 32–41. DOI: https://doi.org/10.1016/j.image.2019.05.020.
CHEN Tong, JIANG Ying, JIAN Wang, QIU Lan-xin, LIU Huan, XIAO Zhao-lin. Maintenance personnel detection and analysis using mask-rcnn optimization on power grid monitoring video [J]. Neural Processing Letters, 2020, 51(2): 1599–1610. DOI: https://doi.org/10.1007/s11063-019-10159-w.
SONG Shi-jin, QUE Zhi-qiang, HOU Jun-jie, DU Sen, SONG Yue-feng. An efficient convolutional neural network for small traffic sign detection [J]. Journal of Systems Architecture, 2019. DOI: https://doi.org/10.1016/j.sysarc.2019.01.012.
GOODFELLOW I, BENGIO Y, COURVILLE A. Deep learning(Vol.1) [M]. Cambridge: MIT Press, 2016: 326–366.
ESTRACH J B, SZLAM A, LECUN Y. Signal recovery from pooling representations [C]// Proceedings of the International Conference on Machine Learning (ICML). 2014: 307–315. http://www.oalib.com/paper/4115463#.X2QRMHot2Uk.