Discrimination of mining microseismic events and blasts using convolutional neural networks and original waveform

Journal of Central South University - Tập 27 Số 10 - Trang 3078-3089 - 2020
Longjun Dong1, Zheng Tang1, Xibing Li1, Yongchao Chen1, Jinchun Xue2
1School of Resources and Safety Engineering, Central South University, Changsha, China
2School of Energy and Mechanical Engineering, Jiangxi University of Science and Technology, Nanchang, China

Tóm tắt

Từ khóa


Tài liệu tham khảo

ZHANG Chu-xuan, LI Xi-bing, DONG Long-jun, MA Ju, HUANG Lin-qi. Analysis of microseismic activity parameters pre- and post roof caving and early warning [J]. Chinese Journal of Rock Mechanics & Engineering, 2016, 35: 3214–3221. DOI: https://doi.org/10.13722/j.cnki.jrme.2015.0928.

XU Nu-wen, LIANG Zheng-zhao, TANG Chun-an, DAI Feng, ZHOU Zhong, SHA Chun. Three-dimensional feedback analysis of rock slope stability based on microseismic monitoring [J]. Chinese Journal of Rock Mechanics and Engineering, 2014, 33: 3093–3014. DOI: https://doi.org/10.13722/j.cnki.jrme.2014.s1.071.

MONDAL D, ROY P N S. Fractal and seismic b-value study during dynamic roof displacements (roof fall and surface blasting) for enhancing safety in the longwall coal mines [J]. Engineering Geology, 2019, 253: 184–204. DOI: https://doi.org/10.1016/j.enggeo.2019.03.018.

GONG Feng-qiang, SI Xue-feng, LI Xi-bing, WANG Shan-yong. Experimental investigation of strain rockburst in circular caverns under deep three-dimensional high-stress conditions [J]. Rock Mechanics and Rock Engineering, 2019, 52(4): 1459–1474. DOI: https://doi.org/10.1007/s00603-018-1660-5.

MA Tian-hui, TANG Chun-an, TANG Shi-bin, KUANG Liang, YU Qun, KONG De-qing, ZHU Xu. Rockburst mechanism and prediction based on microseismic monitoring [J]. International Journal of Rock Mechanics and Mining Sciences, 2018, 110: 177–188. DOI: https://doi.org/10.1016/j.ijrmms.2018.07.016.

MA Chun-chi, LI Tian-bin, ZHANG Hang, JIANG Yu-peng, SONG Tao. A method for numerical simulation based on microseismic information and the interpretation of hard rock fracture [J]. Journal of Applied Geophysics, 2019, 164: 214–224. DOI: https://doi.org/10.1016/j.jappgeo.2019.03.014.

DOU Lin-ming, CAI Wu, CAO An-ye, GUO Wen-hao. Comprehensive early warning of rock burst utilizing microseismic multi-parameter indices [J]. International Journal of Mining Science and Technology, 2018, 28: 767–774. DOI: https://doi.org/10.1016/j.ijmst.2018.08.007.

MA Ju, DONG Long-jun, ZHAO Guo-yan, LI Xi-bing. Discrimination of seismic sources in an underground mine using full waveform inversion [J]. International Journal of Rock Mechanics and Mining Sciences, 2018, 106: 213–222. DOI: https://doi.org/10.1016/j.ijrmms.2018.04.032.

ZHANG Peng-hai, YANG Tian-hong, YU Q L, XU Tao, SHI Wen-hao, LI Shu-cai. Study of a seepage channel formation using the combination of microseismic monitoring technique and numerical method in Zhangmatun iron mine [J]. Rock Mechanics and Rock Engineering, 2016, 49: 3699–3708. DOI: https://doi.org/10.1007/s00603-016-1007-z.

AMINZADEH F, TAFTI T A, MAITY D. An integrated methodology for sub-surface fracture characterization using microseismic data: A case study at the NW Geysers [J]. Computers & Geosciences, 2013, 54: 39–49. DOI: https://doi.org/10.1016/j.cageo.2012.10.015.

ZHAI Hong-yu, CHANG Xu, WANG Yi-bo, YAO Zhen-xing. Inversion for microseismic focal mechanisms in attenuated strata and its resolution [J]. Chinese Journal of Geophysics-Chinese Edition, 2016, 59: 3025–3036. DOI: https://doi.org/10.6038/cjg20160825. (in Chinese)

YANG Cheng-xiang, LUO Zhou-quan, TANG Li-zhong. Study on rule of geostatic activity based on microseismic monitoring technique in deep mining [J]. Chinese Journal of Rock Mechanics and Engineering, 2007, 26(4): 818–824. DOI: https://doi.org/10.1016/S1872-2067(07)60020-5.

DONG Long-jun, SUN Dao-yuan, LI Xi-bing, DU Kun. Theoretical and experimental studies of localization methodology for AE and microseismic sources without pre-measured wave velocity in mines [J]. IEEE Access, 2017, 5: 16818–16828. DOI: https://doi.org/10.1109/ACCESS.2017.2743115.

DONG Long-jun, SHU Wei-wei, LI Xi-bing, HAN Guang-jie, ZOU Wei. Three dimensional comprehensive analytical solutions for locating sources of sensor networks in unknown velocity mining system [J]. IEEE Access, 2017, 5: 11337–11351. DOI: https://doi.org/10.1109/ACCESS.2017.2710142.

DONG Long-jun, SHU Wei-wei, HAN Guang-jie, LI Xi-bing, WANG Jian. A multi-step source localization method with narrowing velocity interval of cyber-physical systems in buildings [J]. IEEE Access, 2017, 5: 20207–20219. DOI: https://doi.org/10.1109/ACCESS.2017.2756855.

DONG Long-jun, LI Xi-bing, MA Ju, TANG Li-zhong. Three-dimensional analytical comprehensive solutions for acoustic emission/microseismic sources of unknown velocity system [J]. Chin J Rock Mech Eng, 2017, 36: 186–197. DOI: https://doi.org/10.13722/j.cnki.jrme.2015.1765.

DONG Long-jun, LI Xi-bing, TANG Li-zhong, GONG Feng-qiang. Mathematical functions and parameters for microseismic source location without pre-measuring speed [J]. Chinese Journal of Rock Mechanics and Engineering, 2011, 30: 2057–2067. DOI: https://doi.org/10.1016/j.cnsns.2011.01.018.

FRANTTI G E, LEVEREAULT L A. Auditory discrimination of seismic signals from earthquakes and explosions [J]. Bulletin of the Seismological Society of America, 1965, 55: 1–25. DOI: https://doi.org/10.1016/0014-4835(75)90080-9.

BOOKER A, MITRONOVAS W. An application of statistical discrimination to classify seismic events [J]. Bulletin of the Seismological Society of America, 1964, 54: 961–971. DOI: https://doi.org/10.1596/1813-9450-4793.

TAYLOR S R. Analysis of high-frequency Pg/Lg ratios from NTS explosions and western US earthquakes [J] Bulletin of the Seismological Society of America, 1996, 86: 1042–1053. http://library.sciencemadness.org/lanl2_a/lib-www/la-pubs/00326269.pdf.

MALOVICHKO D. Discrimination of blasts in mine seismology [C]// Deep Mining. 2012: 161–171. DOI: https://doi.org/10.36487/ACG_rep/1201_11_malovichko.

JIANG Wen-wu, YANG Zuo-lin, XIE Jian-min, LI Jia-fu. Application of FFT spectrum analysis to identify microseismic signals [J]. Science & Technology Review, 2015, 33: 86–90. DOI: https://doi.org/10.3981/j.issn.1000-7857.2015.02.013.

DOWLA F U. Neural networks in seismic discrimination [J]. Nato Asi, 1995, 303: 777–789. DOI: https://doi.org/10.1007/978-94-011-0419-7_41.

BENBRAHIM M, DAOUDI A, BENJELLOUN K, IBENBRAHIM A. Discrimination of seismic signals using artificial neural networks [C]// The Second World Enformatika Conference, WEC’05. Istanbul, Turkey, 2005, http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.106.144.

ZHAO Guo-yan, MA Ju, DONG Long-jun, LI Xi-bing, CHEN Guang-hui, ZHANG Chu-xuan. Classification of mine blasts and microseismic events using starting-up features in seismograms [J]. Transactions of Nonferrous Metals Society of China, 2015, 25: 3410–3420. DOI: https://doi.org/10.1016/S1003-6326(15)63976-0.

MULLER S, GARDA P, MULLER J D, CANSI Y. Seismic events discrimination by neuro-fuzzy merging of signal and catalogue features [J]. Physics and Chemistry of the Earth, Part A: Solid Earth and Geodesy, 1999, 24: 201–206. DOI: https://doi.org/10.1016/S1464-1895(99)00019-8.

ORLIC N, LONCARIC S. Earthquake—explosion discrimination using genetic algorithm-based boosting approach [J]. Computers & Geosciences, 2010, 36: 179–185. DOI: https://doi.org/10.1016/j.cageo.2009.05.006.

DONG Long-jun, LI Xi-bing, XIE Gong-nan. Nonlinear methodologies for identifying seismic event and nuclear explosion using random forest, support vector machine, and naive Bayes classification [J]. Abstract and Applied Analysis, 2014: 459137. DOI: https://doi.org/10.1155/2014/459137.

VALLEJOS J A, MCKINNON S D. Logistic regression and neural network classification of seismic records [J]. International Journal of Rock Mechanics and Mining Sciences, 2013, 62: 86–95. DOI: https://doi.org/10.1016/j.ijrmms.2013.04.005.

DONG Long-jun, WESSELOO J, POTVIN Y, LI Xi-bing. Discrimination of mine seismic events and blasts using the fisher classifier, naive bayesian classifier and logistic regression [J]. Rock Mech. Rock Eng, 49(1): 183–211. DOI: https://doi.org/10.1007/s00603-015-0733-y.

SHANG Xue-yi, LI Xi-bing, MORALES-ESTEBAN A, CHEN Guang-hui. Improving microseismic event and quarry blast classification using artificial neural networks based on principal component analysis [J]. Soil Dynamics and Earthquake Engineering, 2017, 99: 142–149. DOI: https://doi.org/10.1016/j.soildyn.2017.05.008.

HUBEL D H, WIESEL T N. Receptive fields, binocular interaction and functional architecture in the cat’s visual cortex [J]. The Journal of physiology, 1962, 160: 106–154. DOI: https://doi.org/10.1113/jphysiol.1962.sp006837.

FUKUSHIMA K. Neocognitron: A self-organizing neural network model for a mechanism of pattern recognition unaffected by shift in position [J]. Biological Cybernetics, 1980, 36: 193–202. DOI: https://doi.org/10.1007/BF00344251.

LI Zhong-mei, GUI Wei-hua, ZHU Jian-yong. Fault detection in flotation processes based on deep learning and support vector machine [J]. Journal of Central South University, 2019, 26(9): 2504–2515. DOI: https://doi.org/10.1007/s11771-019-4190-8.

TIVIVE F H C, BOUZERDOUM A. A new class of convolutional neural networks (SICoNNets) and their application of face detection. [C]// Proceedings of the International Joint Conference on Neural Networks, IEEE, 2003. https://ieeexplore.ieee.org/document/1223742.

SHAO Jie, QIAN Yong-sheng. Three convolutional neural network models for facial expression recognition in the wild [J]. Neurocomputing, 2019, 355: 82–92. DOI: https://doi.org/10.1016/j.neucom.2019.05.005.

KÖLSCH A, AFZAL M Z, EBBECKE M, LIWICKI M. Real-time document image classification using deep CNN and extreme learning machines [EB/OL] 2017-11-03. https://arxiv.org/pdf/1711.05862v1.pdf DOI: https://doi.org/10.1109/ICDAR.2017.217.

SHARAD J, SURAJ S, NITIN K. First steps toward CNN based source classification of document images shared over messaging app [J]. Signal Processing: Image Communication, 2019, 78: 32–41. DOI: https://doi.org/10.1016/j.image.2019.05.020.

CHEN Tong, JIANG Ying, JIAN Wang, QIU Lan-xin, LIU Huan, XIAO Zhao-lin. Maintenance personnel detection and analysis using mask-rcnn optimization on power grid monitoring video [J]. Neural Processing Letters, 2020, 51(2): 1599–1610. DOI: https://doi.org/10.1007/s11063-019-10159-w.

SONG Shi-jin, QUE Zhi-qiang, HOU Jun-jie, DU Sen, SONG Yue-feng. An efficient convolutional neural network for small traffic sign detection [J]. Journal of Systems Architecture, 2019. DOI: https://doi.org/10.1016/j.sysarc.2019.01.012.

GOODFELLOW I, BENGIO Y, COURVILLE A. Deep learning(Vol.1) [M]. Cambridge: MIT Press, 2016: 326–366.

ESTRACH J B, SZLAM A, LECUN Y. Signal recovery from pooling representations [C]// Proceedings of the International Conference on Machine Learning (ICML). 2014: 307–315. http://www.oalib.com/paper/4115463#.X2QRMHot2Uk.

DONG Long-jun, WESSELOO J, POTVIN Y, LI Xi-bing. Discriminant models of blasts and seismic events in mine seismology [J]. Int J Rock Mech Min Sci, 2016, 86: 282–291. DOI: https://doi.org/10.1016/j.ijrmms.2016.04.021.